Presentation is loading. Please wait.

Presentation is loading. Please wait.

Methods in 3D Structure Determination

Similar presentations


Presentation on theme: "Methods in 3D Structure Determination"— Presentation transcript:

1 Methods in 3D Structure Determination
David Wishart June 2005 Methods in 3D Structure Determination David Wishart University of Alberta Edmonton, AB Lecture 3.1 (c) CGDN 2005

2 3D Structure Review of Polypeptide Structure
Protein Structure Determination by X-ray Protein Structure Determination by NMR The Protein Data Bank Lecture 3.1

3 Much Ado About Structure
Structure Function Structure Mechanism Structure Origins/Evolution Structure-based Drug Design Solving the Protein Folding Problem Lecture 3.1

4 Protein Structures Are Complex
Lactate Dehydrogenase: Mixed a / b Immunoglobulin Fold: b Hemoglobin B Chain: a Lecture 3.1

5 Proteins are Complex Average residue contains 8 “heavy” atoms
Average protein contains 300 amino acids Average structure contains 2400 atoms First structure (sperm whale myoglobin) took ~5 years with a team of ~15 key punch operators working around the clock to solve Most structures still take 1 year to solve Lecture 3.1

6 Solving Protein Structures
Only 2 kinds of techniques allow one to get atomic resolution pictures of macromolecules X-ray Crystallography (first applied in Kendrew & Perutz) NMR Spectroscopy (first applied in Ernst & Wuthrich) Lecture 3.1

7 X-ray Crystallography
Lecture 3.1

8 X-ray Crystallography
Crystallization Diffraction Apparatus Diffraction Principles Conversion of Diffraction Data to Electron Density Resolution Chain Tracing Lecture 3.1

9 Crystallization Protein Crystal Lecture 3.1

10 Crystallization Lecture 3.1

11 Diffraction Apparatus
Lecture 3.1

12 Diffraction Apparatus
Lecture 3.1

13 A Bigger Diffraction Apparatus
Synchrotron Light Source Lecture 3.1

14 Diffraction Principles
nl = 2dsinq Lecture 3.1

15 Diffraction Principles
Corresponding Diffraction Pattern A string of atoms Lecture 3.1

16 Protein Crystal Diffraction
Diffraction Pattern Lecture 3.1

17 Diffraction Apparatus
Lecture 3.1

18 Converting Diffraction Data to Electron Density
F T Lecture 3.1

19 Fourier Transformation
i(xyz)(hkl) F(x,y,z) = f(hkl)e d(hkl) Converts from units of inverse space to cartesian coordinates Lecture 3.1

20 Diffracting a Cat Diffraction data with phase information Real
Lecture 3.1

21 Reconstructing a Cat FT Easy FT Hard Lecture 3.1

22 The Phase Problem Diffraction data only records intensity, not phase information (half the information is missing) To reconstruct the image properly you need to have the phases (even approx.) Guess the phases (molecular replacement) Search phase space (direct methods) Bootstrap phases (isomorphous replacement) Uses differing wavelengths (anomolous disp.) Lecture 3.1

23 MAD & X-ray Crystallography
MAD (Multiwavelength Anomalous Dispersion Requires synchrotron beam lines Requires protein with multiple scattering centres (selenomethionine labeled) Allows rapid phasing Proteins can now be “solved” in just 1-2 days Lecture 3.1

24 Resolution 1.2 Å 2 Å 3 Å Lecture 3.1

25 Chain Tracing Electron Chain Final Density Trace Model Lecture 3.1

26 Refinement Lecture 3.1

27 Refinement R R = S(|Fo-Fc|)/S(Fo) Fc = calculated structure factor
# iterations R R = S(|Fo-Fc|)/S(Fo) Fc = calculated structure factor Fo = observed structure factor Lecture 3.1

28 The Final Result http://www-structure.llnl.gov/Xray/101index.html
ORIGX TRX 147 ORIGX TRX 148 SCALE TRX 149 SCALE TRX 150 SCALE TRX 151 ATOM N SER A TRX 152 ATOM CA SER A TRX 153 ATOM C SER A TRX 154 ATOM O SER A TRX 155 ATOM CB SER A TRX 156 ATOM OG SER A TRX 157 ATOM N ASP A TRX 158 ATOM CA ASP A TRX 159 ATOM C ASP A TRX 160 ATOM O ASP A TRX 161 ATOM CB ASP A TRX 162 Lecture 3.1

29 Bioinformatics & X-ray
Energy minimization and molecular dynamics (for structure refinement) Structure quality assessment (threading, comparative geometry) Structure comparison and classification (VAST, SCOP, CATH, CE) Automated chain tracing (threading) Domain, secondary structure, and supersecondary structure assignment Lecture 3.1

30 NMR Spectroscopy Radio Wave Transceiver Lecture 3.1

31 Principles of NMR Measures nuclear magnetism or changes in nuclear magnetism in a molecule NMR spectroscopy measures the absorption of light (radio waves) due to changes in nuclear spin orientation NMR only occurs when a sample is in a strong magnetic field Different nuclei absorb at different energies (frequencies) Lecture 3.1

32 Principles of NMR Lecture 3.1

33 Principles of NMR N N hn S S Low Energy High Energy Lecture 3.1

34 The Bell Analogy CH3 NH CH Lecture 3.1

35 FT NMR Free Induction Decay FT NMR spectrum Lecture 3.1

36 Fourier Transformation
iwt F(w) = f(t)e dt Converts from units of time to units of frequency Lecture 3.1

37 1H NMR Spectra Exhibit... Chemical Shifts (peaks at different frequencies or ppm values) Splitting Patterns (from spin coupling) Different Peak Intensities (# 1H) Lecture 3.1

38 Protein NMR Spectrum Lecture 3.1

39 2D Gels & 2D NMR SDS PAGE Lecture 3.1

40 Multidimensional NMR 1D 2D 3D MW ~ 500 MW ~ 10,000 MW ~ 30,000
Lecture 3.1

41 The NMR Process Obtain protein sequence Collect TOCSY & NOESY data
Use chemical shift tables and known sequence to assign TOCSY spectrum Use TOCSY to assign NOESY spectrum Obtain inter and intra-residue distance information from NOESY data Feed data to computer to solve structure Lecture 3.1

42 Multidimensional NMR NOESY TOCSY Lecture 3.1

43 Assigning Chemical Shifts
Lecture 3.1

44 Measuring NOEs Lecture 3.1

45 NMR Spectroscopy Chemical Shift Assignments NOE Intensities
J-Couplings Distance Geometry Simulated Annealing Lecture 3.1

46 The Final Result ORIGX2 0.000000 1.000000 0.000000 0.00000 2TRX 147
SCALE TRX 149 SCALE TRX 150 SCALE TRX 151 ATOM N SER A TRX 152 ATOM CA SER A TRX 153 ATOM C SER A TRX 154 ATOM O SER A TRX 155 ATOM CB SER A TRX 156 ATOM OG SER A TRX 157 ATOM N ASP A TRX 158 ATOM CA ASP A TRX 159 ATOM C ASP A TRX 160 ATOM O ASP A TRX 161 ATOM CB ASP A TRX 162 Lecture 3.1

47 Bioinformatics & NMR Energy minimization and molecular dynamics (for structure refinement) Structure quality assessment (threading, comparative geometry) Structure comparison and classification (VAST, SCOP, CATH, CE) Automated assignment, fuzzy logic, chemical shift prediction Lecture 3.1

48 X-ray Versus NMR X-ray NMR Producing enough protein for trials
Crystallization time and effort Crystal quality, stability and size control Finding isomorphous derivatives Chain tracing & checking Producing enough labeled protein for collection Sample “conditioning” Size of protein Assignment process is slow and error prone Measuring NOE’s is slow and error prone Lecture 3.1

49 The PDB PDB - Protein Data Bank
Established in 1971 at Brookhaven National Lab (7 structures) Primary archive for macromolecular structures (proteins, nucleic acids, carbohydrates) Moved from BNL to RCSB (Research Collaboratory for Structural Bioinformatics) in 1998 Lecture 3.1

50 The PDB Lecture 3.1

51 The PDB Contains coordinate data (primarily) from X-ray, NMR and modelling Contains files in 2 formats PDB format mmCIF (macromolecular Crystallographic Information File Format) Contains >21,000 entries Currently growing exponentially Lecture 3.1

52 PDB Growth Lecture 3.1

53 Sequences vs. Structures
200000 180000 160000 140000 120000 Sequences 100000 Structures 80000 60000 40000 20000 Lecture 3.1

54 PDB Composition (2003) Lecture 3.1

55 PDB Data Entry Lecture 3.1

56 PDB File Format HEADER ELECTRON TRANSPORT 19-MAR-90 2TRX 2TRXA 1
COMPND THIOREDOXIN TRXA 2 SOURCE (ESCHERICHIA $COLI) TRX 4 AUTHOR S.K.KATTI,D.M.LE*MASTER,H.EKLUND TRX 5 REVDAT JAN-93 2TRXA HEADER COMPND TRXA 3 REVDAT OCT-91 2TRX TRX 6 JRNL AUTH S.K.KATTI,D.M.LE*MASTER,H.EKLUND TRX 7 JRNL TITL CRYSTAL STRUCTURE OF THIOREDOXIN FROM ESCHERICHIA 2TRX 8 JRNL TITL 2 $COLI AT 1.68 ANGSTROMS RESOLUTION TRX 9 JRNL REF J.MOL.BIOL V TRX 10 JRNL REFN ASTM JMOBAK UK ISSN TRX 11 REMARK 1 HEADER - PDB accession, date, function CMPND - name of molecule or compound SOURCE - origin or source of molecule (species) REVDAT - revision dates JRNL - primary reference (journal) describing structure REMARK - a comment made by depositor Lecture 3.1

57 PDB File Format REMARK - a comment made by depositor
REMARK 6 CORRECTION. CORRECT CLASSIFICATION ON HEADER RECORD AND TRXA 5 REMARK 6 REMOVE E.C. CODE. 15-JAN TRXA 6 SEQRES 1 A SER ASP LYS ILE ILE HIS LEU THR ASP ASP SER PHE ASP 2TRX 74 SEQRES 2 A THR ASP VAL LEU LYS ALA ASP GLY ALA ILE LEU VAL ASP 2TRX 75 SEQRES 3 A PHE TRP ALA GLU TRP CYS GLY PRO CYS LYS MET ILE ALA 2TRX 76 SEQRES 4 A PRO ILE LEU ASP GLU ILE ALA ASP GLU TYR GLN GLY LYS 2TRX 77 SEQRES 5 A LEU THR VAL ALA LYS LEU ASN ILE ASP GLN ASN PRO GLY 2TRX 78 SEQRES 6 A THR ALA PRO LYS TYR GLY ILE ARG GLY ILE PRO THR LEU 2TRX 79 SEQRES 7 A LEU LEU PHE LYS ASN GLY GLU VAL ALA ALA THR LYS VAL 2TRX 80 SEQRES 8 A GLY ALA LEU SER LYS GLY GLN LEU LYS GLU PHE LEU ASP 2TRX 81 SEQRES 9 A ALA ASN LEU ALA TRX 82 HET CU COPPER ++ ION TRX 100 HET CU COPPER ++ ION TRX 101 HET MPD METHYL-2,4-PENTANEDIOL TRX 102 HET MPD METHYL-2,4-PENTANEDIOL TRX 103 REMARK - a comment made by depositor SEQRES - sequence of protein in 3 letter code HET - names of heteroatoms Lecture 3.1

58 PDB File Format FORMUL - chemical formula of heteroatoms
FORMUL CU 2(CU1 ++) TRX 110 FORMUL 4 MPD 8(C6 H14 O2) TRX 111 FORMUL 5 HOH *140(H2 O1) TRX 112 HELIX 1 A1A SER A LEU A DISORDERED IN MOLECULE B TRX 113 HELIX 2 A2A CYS A TYR A BENT BY 30 DEGREES AT RES TRX 114 HELIX 3 A3A ASN A ASN A TRX 115 HELIX A THR A TYR A DISTORTED H-BONDING C-TERMINS 2TRX 116 HELIX 5 A4A SER A LEU A TRX 117 SHEET 1 B1A 5 LYS A 3 THR A TRX 123 SHEET 2 B1A 5 LEU A 53 ASN A O VAL A N ILE A TRX 124 SHEET 3 B1A 5 GLY A 21 TRP A N TRP A O LEU A TRX 125 SHEET 4 B1A 5 PRO A 76 LYS A O THR A N PHE A TRX 126 SHEET 5 B1A 5 VAL A 86 GLY A N GLY A O LYS A TRX 127 SSBOND 1 CYS A CYS A TRX 143 FORMUL - chemical formula of heteroatoms HELIX - location of helices as identified by depositor SHEET location of beta sheets as identified by depositor SSBOND - location and exisitence of disulfide bond Lecture 3.1

59 PDB File Format ORIGX TRX 146 ORIGX TRX 147 ORIGX TRX 148 SCALE TRX 149 SCALE TRX 150 SCALE TRX 151 ATOM N SER A TRX 152 ATOM CA SER A TRX 153 ATOM C SER A TRX 154 ATOM O SER A TRX 155 ATOM CB SER A TRX 156 ATOM OG SER A TRX 157 ATOM N ASP A TRX 158 ATOM CA ASP A TRX 159 ATOM C ASP A TRX 160 ATOM O ASP A TRX 161 ORIGXn - scaling factors to transform from orthogonal coords. SCALEn - scaling factors to transform to fractional cryst. Coords. ATOM - atomic coordinates of molecule Lecture 3.1

60 PDB File Format Residue Name Atom # X coord (Å) Z coord (Å) B-factor
Atom Name Residue # Y coord (Å) Occupancy ATOM N SER A TRX 152 ATOM CA SER A TRX 153 ATOM C SER A TRX 154 ATOM O SER A TRX 155 ATOM CB SER A TRX 156 ATOM OG SER A TRX 157 ATOM N ASP A TRX 158 ATOM CA ASP A TRX 159 ATOM C ASP A TRX 160 ATOM O ASP A TRX 161 Lecture 3.1

61 PDB File Format Spacing is critical (Fortran compatible)
Often inconsistent (30+ years old) Watch for unusual residues (ACE, SME) Some files have 1 structure (X-ray), others have 2 structures (chain A and B in unit cell), others have >20 (NMR) Some have missing atoms, others have hydrogens, others don’t Lecture 3.1

62 Structure File Conversion
Alchemy (t) AMBER PREP (prep) Ball and Stick (bs) Biosym .CAR (car) Boogie (boog) Cacao Cartesian (caccrt) Cambridge CADPAC (cadpac) CHARMm (charmm) Chem3D Cartesian 1 (c3d1) Chem3D Cartesian 2 (c3d2) CSD CSSR (cssr) CSD FDAT (fdat) CSD GSTAT (c) Feature (feat) Free Form Fractional (f) GAMESS Output (famout) Gaussian Z-Matrix (g) Gaussian Output (gauout) Hyperchem (hin) MDL Isis (isis) Mac Molecule(macmol) Macromodel (k) Micro World (micro) MM2 Input (mi) MM2 Ouput (mo) MM3 (mm3) MMADS (mmads) MDL MOLfile (mdl) MOLIN (molen) Mopac Cartesian (ac) Mopac Internal (ai) Mopac Output (ao) PC Model (pc) PDB (p) Quanta (quanta) ShelX (shelx) Spartan (spar) Spartan Semi-Empirical (semi) Spartan Mol. Mechanics (spmm) Sybyl Mol (mol) Sybyl Mol2 (mol2) Conjure (con) Maccs 2d (maccs2) Maccs 3d (maccs3) UniChem XYZ (unixyz) XYZ (x) XED (xed) Lecture 3.1

63 Lecture 3.1

64 Lecture 3.1

65 Lecture 3.1

66 Lecture 3.1

67 Lecture 3.1

68 Conclusions X-ray and NMR spectroscopy are both capable of determining 3D structures in a high throughput manner X-ray is more powerful than NMR for coordinate determination, NMR is more powerful for understanding “processes” and motions The Protein Databank (PDB) is the primary resource for protein structure information Lecture 3.1


Download ppt "Methods in 3D Structure Determination"

Similar presentations


Ads by Google