Download presentation
Presentation is loading. Please wait.
Published byJustin White Modified over 8 years ago
1
Jari Koskinen 1 Thin Film Technology Lecture 2 Vacuum Surface Engineering Jari Koskinen 2014
2
Jari Koskinen 2 Vacuum surface engineering 1.Vacuum technology 2.Surface phenomena 3.Surface energetic ion interaction
3
Jari Koskinen 3 Vacuum surface engineering 1.Vacuum technology 2.Surface phenomena 3.Surface energetic ion interaction
4
Jari Koskinen 4 Vacuum system VACUUM GAUGE VACUUM CHAMBER FLANCE PUMP RESUDUAL GAS
5
Jari Koskinen 5
6
Jari Koskinen 6 Large surfaces, upscaling www.scheuten.com
7
Jari Koskinen 7 Residual gas pump desorption diffusion of dissolved molecules permeation leak Pumping of: Residual gas: Adsorption – Desorption Diffusion of dissolver or trapped gas Permeation trough materials Leaks
8
Jari Koskinen 8 Units of pressure UltraGood High HighInter- mediate Rough Total pressure of residual gasses
9
Jari Koskinen 9 Sources of residual gas High vacuum pumping speed leak Good High vacuum desorption from walls baking Ultra high vacuum impurities internal leaks material selection diffusion permeation
10
Jari Koskinen 10 UltraGood High HighInter- mediate Rough Total pressure of residual gasses Average mean free path (distance between collission) in nitrogen residual gas
11
Jari Koskinen 11 Average mean free path (distance between collission) in nitrogen residual gas UltraGood High HighInter- mediate Rough Total pressure of residual gasses
12
Jari Koskinen 12 Phases of residual gas UltraGood High HighInter- mediate Rough Total pressure of residual gasses d = diameter of chamber Viscotic < d/100 Intermediate Molecular >> d
13
Jari Koskinen 13 Phases of residual gas UltraGood High HighInter- mediate Rough Total pressure of residual gasses d = diameter of chamber Viscotic < d/100 Intermediate Molecular >> d
14
Jari Koskinen 14 Time to form one molecular layer on surface UltraGood High HighInter- mediate Rough Total pressure of residual gasses
15
Jari Koskinen 15 Vapour and liquid in vacuum pump balance: pumping = evaporation pressure constant until all liquid is pumped balance: condensation = evaporation
16
Jari Koskinen 16 Critical temperatures and pressures for some residual gasses above T c no liquid pump Helium Hydrogen Nitrogen Carbon monoxide Argon Oxygen Methane Carbon dioxide Chlorine Ether Ethanol Carbon tetraclor. Water Gas or vapor
17
Jari Koskinen 17 Vacuum pumps Positive displacement (mechanical pumps) Momentum transfer (molecular pumps) Entrapment
18
Jari Koskinen 18 Mechanical pumps Rotary vaneRootsDiafragma
19
Jari Koskinen 19 Mechanical pumps Scroll pumppump
20
Jari Koskinen 20 Momentum transfer Turbo molecularmolecularOil diffusion pump pump
21
Jari Koskinen 21 Entrapment cryo pumppump ion pump
22
Jari Koskinen 22 Pumps and vacuum ranges
23
Jari Koskinen 23 Vacuum gauges Mechanical – diaphragm Electronic Piezoresitive (strain gauge) Capacitive Magnetic Piezoelectric Optical Potentiometric Resonant Thermal conductivity – Pirani Ionzation gauge Hot cathode Cold cathode (Penning)
24
Jari Koskinen 24 Gauges ionization gauge hot filamentPirani
25
Jari Koskinen 25
26
Jari Koskinen 26 Residual gas analyser SRS RGA100 Residual Gas Analyzer
27
Jari Koskinen 27 Vacuum systems
28
Jari Koskinen 28 Vacuum systems
29
Jari Koskinen 29 Gas flow in vacuum systems Q = C(P 1 – P 2 ) P1P1 P2P2 C conductance l/s Q gas troughput [pressure*volume/s] in series: in parallel:
30
Jari Koskinen 30 Conductance of various geometries M. Ohring
31
Jari Koskinen 31 Vacuum systems
32
Jari Koskinen 32 Vacuum system design
33
Jari Koskinen 33 Vacuum surface engineering 1.Vacuum technology 2.Surface phenomena 3.Surface energetic ion interaction
34
Jari Koskinen 34 Surface energy γ surface tension = dW work needed to form surface dA In thermodynamic equilibrium:
35
Jari Koskinen 35 Contact angle Young equation S solid L liquid G gas Spreading parameter S Complete wetting when S ≈ 0 non-wetting when S ≈ -2 Υ LG
36
Jari Koskinen 36 Surface reconstruction
37
Jari Koskinen 37 Surface structure and defects
38
Jari Koskinen 38 Adsorption Physisorption Chemisorption
39
Jari Koskinen 39 Adsorption Physisorption Chemical bonding: polaroization (van der Waals) Bonding energy ≈ 0.001 – 0.5 eV Bond length ≈ 3 – 10 Å For example: nobel gas or molecules on materials Possibly precursion state before chemisorption
40
Jari Koskinen 40 Adsorption Chemisorption Chemical bonding: charge exchange Bonding energy ≈ 0.5 – 5 eV Bond length ≈ 1 – 3 Å For example: H, O, N, CO on metals Dissociation of molecule Final absorption
41
Jari Koskinen 41 Desorption Adsorbed molecule receives energy E D in order to leave surface thermal radiation photons electrons ions electric field
42
Jari Koskinen 42 Balance of absorption - desorption collisions of molecules (gas) S sticking coefficient E D energy for desorption P pressure Coverage ≈ High P, low T more adsorption E D large, full coverage very little adsorption in UHV
43
Jari Koskinen 43 Surface diffusion http://iramis.cea.fr/spcsi/Phocea/Vie_des_labos/Ast/astimg.php?voir=60&type=groupe
44
Jari Koskinen 44 Surface diffusion Diffusion is thermally activated random movement of adsorbed atoms D = D 0 e -E act /kT E act large -> slow diffusion T high – fast diffusion http://iramis.cea.fr/spcsi/Phocea/Vie_des_labos/Ast/astimg.php?voir=60&type=groupe Surface diffusion of Cu on Cu(111) E act
45
Jari Koskinen 45 Work function Work function ϕ E F Fermi energy D dipole potential
46
Jari Koskinen 46 Work function of some metals Adsorbed atoms alloying effect work function
47
Jari Koskinen 47 Solubility of gasses into metals
48
Jari Koskinen 48 Vacuum surface engineering 1.Vacuum technology 2.Surface phenomena 3.Surface energetic ion interaction
49
Jari Koskinen 49 Energetic ion surface interactions
50
Jari Koskinen 50 Secondary electrons
51
Jari Koskinen 51 Desorption, cleaning
52
Jari Koskinen 52 Sputtering
53
Jari Koskinen 53 Collision cascade, thermal spike K. Nordlund
54
Jari Koskinen 54 Thermal spike http://en.wikipedia.org/wiki/File:10kevau _au.gif HY Nordlund simulations http://beam.acclab.helsinki.fi/~knordlun/ anims.html http://beam.acclab.helsinki.fi/~knordlun/ gif/au500.avi 10 keV Au ion to Au surface
55
Jari Koskinen 55 doping, compounds
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.