Presentation is loading. Please wait.

Presentation is loading. Please wait.

Combined Time Frequency Detection (TFD) by Single Shot Four Wave Mixing Yehiam Prior and Andrey Shalit Department of Chemical Physics Weizmann Institute.

Similar presentations


Presentation on theme: "Combined Time Frequency Detection (TFD) by Single Shot Four Wave Mixing Yehiam Prior and Andrey Shalit Department of Chemical Physics Weizmann Institute."— Presentation transcript:

1 Combined Time Frequency Detection (TFD) by Single Shot Four Wave Mixing Yehiam Prior and Andrey Shalit Department of Chemical Physics Weizmann Institute of Science, Rehovot, Israel Coherent control, SafedSeptember 2012

2 Spectroscopy can be performed either in the frequency domain or in the time domain Scan the frequency to observe a spectrum OR capture the time response to impulse excitation, and Fourier Transform to obtain a spectrum We are taught that it is a matter of convenience, instrumentation, efficiency, signal to noise, etc. but otherwise the derived physical information is the same, and is all we can have.

3 Spontaneous Raman spectrum of chloroform (CHCl 3 ) Direct spontaneous Raman spectrum (Frequency domain - from the catalogue)

4 Time Resolved Four Wave Mixing A pair of pulses (Pump and Stokes) excites coherent vibrations in the ground state A third (delayed) pulse probes the state of the system to produce signal The delay is scanned and dynamics is retrieved

5 kk k1k1 k1k1 k2k2 k CARS Energy conservation Conservation of Momentum (phase matching)  Raman 11 11 22  AS  1 -  2 -  AS = 0  k = 2k 1 -k 2 -k AS = 0 Coherent Anti Stokes Raman Scattering (CARS)

6 ~ 35-100 femtosecond pulses ~ 0.1 mJ per pulse EaEa EbEb EcEc Time delay Phase matching Time Resolved Four Wave Mixing

7 F.T.

8 Time Domain vs. Frequency Domain In this TR-FWM the signal is proportional to a (polarization) 2 and therefore beats are possible

9 Experimental System (modified)

10 Time frequency Detection (CHCl 3 ) Summation over all frequencies (Δ)

11 F.T

12 Limited Band Detection Summation over 500cm -1 window

13 Open vs. Limited Detection Open band: Limited band: F.T

14 Time Frequency Detection CHCl 3

15 Spectral Distribution of the Observed Features 104 cm -1 365 cm -1 Observed frequency: 104 cm -1 Observed detuning : 310 cm -1 Observed frequency: 365 cm -1 Observed detuning : 180 cm -1

16 Take home message 1: Working with spectrograms (combined time frequency domains) can be useful BUT

17 This is a long measurement, it takes approximately 10 minutes, or >> 100 seconds or >> 100,000 pulses. Do we care that this is a long measurement?

18 Chlorophyll derivatives for PDT 200400600800 0 0.2 0.4 0.6 0.8 1 Number of Pulses ( X100) Normalized Transmission 2x10 15 photons/cm 2 Pixels 100200300400500600700 100 200 400 500 600 700 Pixels 1002003400600700 100 200 300 40 500 600 700 a b.................. Transmission Avigdor Scherz Iddo Pinkas

19 Chlorophyll derivatives for PDT Avigdor Scherz Iddo Pinkas Transmission - Photo-bleaching 200400600800 0 0.2 0.4 0.6 0.8 1 Number of Pulses ( X100) Normalized Transmission Pixels 100200300400500600700 100 200 300 400 500 600 700 Pixels 100200300400500600700 100 200 300 400 500 600 700 a b

20 Take home message 2: Working with spectrograms (combined time frequency domains) can be useful Doing it rapidly is important

21 The measurement takes well over 100 seconds In what follows I will show you how this same task can be performed much faster 10 15 times faster, or in < 100 femtoseconds !

22 Spatial Crossing of two short pulses: Interaction regions k3k3 k1k1 5mm Beam diameter – 5 mm 100 fsec = 30 microns Different regions in the interaction zone correspond to different times delays k 1 arrives first k 3 arrives first

23 Three pulses - Box-CARS geometry Time delays Spatial coordinates

24 +y-y k 1 firstk 3 first z k1k1 k2k2 k3k3 Pump-probe delay k1k1 k2k2 k3k3 Intersection Region: y-z slice

25 Single Pulse CARS Image CH 2 Cl 2

26 Time Resolved Signal and its Power Spectrum

27 CHBr 3 Several modes in the range

28 Time Resolved Signal and its Power Spectrum

29 Strict Phase Matching : Phase Matching Filtering x y z

30

31 Combined Time Frequency Measurements Scanning angle = Scanning frequency

32 Combined Time Frequency Measurements by Single Shot

33 +y-y k 1 firstk 3 first z Intersection Region: y-z slice

34 +y-y z Δ Intersection Region: y-z slice

35 Time Frequency Detection: Single Shot Image Focusing angle : δ = 3 mrad (CH 2 Br 2 )

36 Time Frequency Detection by Single Shot: Fourier Transformed (CH 2 Br 2 )

37 Scanned Measurements

38 Single pulse measurement Scanning method >10 5 pulses

39 Take home message 3: Working with spectrograms (combined time frequency domains) can be useful Doing it rapidly is important A full spectrum can be obtained within a single laser pulse

40 What can we do with this new capability?

41 Single Pulse Image (CH 2 Br 2 ) 180 cm -1 360cm -1 Ω= 180 cm -1 : Real vibrational frequency as a result of the inherent heterodyning due to the molecular anisotropy. Ω =360 cm -1 = 180cm -1 x2 : Homodyne beat due to the interference of two contributing spectroscopic pathways in non-resonant DFWM.

42 Magic Angle Polarization S total = S iso +S aniso k1k1 k1k1 k2k2 k2k2 k3k3 k3k3 360cm -1 180cm -1

43 |R zzzz | 2 |R zzmm | 2 Polarization Sensitive Single Shot

44

45

46 Time-Polarization Single Shot

47 Take home message 4: Working with spectrograms (combined time frequency domains) can be useful Doing it rapidly is important A full spectrum can be obtained within a single laser pulse Depolarization ratios can be easily measured

48 Two Dimensional Time Resolved Single Shot

49 Two Dimensional Image: IR 140

50

51 Photo-degradation of WST11

52 Pd Role of the Central Atom Without metal atom With Pd

53

54 Take home message 5 : Working with spectrograms (combined time frequency domains) can be useful Doing it rapidly is important A full spectrum can be obtained within a single laser pulse Depolarization ratios can be easily measured Photo-bleachable molecules are now more readily accessible for measurements

55 Summary Working with spectrograms (combined time frequency domains) can be useful Doing it rapidly is important A full spectrum can be obtained within a single laser pulse Depolarization ratios can be easily measured Photo-bleachable molecules are now more readily accessible for measurements [1] Y. Paskover, I. S. Averbukh, YP, Opt. Exp. 15, 1700 (2007) [2] A. Shalit, Y. Paskover, YP, Chem. Phys. Lett 450, 408, (2008) [3] Y. Paskover, A Shalit Y. Prior, Opt. Comm. 283, 1917 (2010) [4] A. Shalit and Yehiam Prior, PCCP, In press (2012)

56 + 0 Detuning from a probe (k 3 ) carrier frequency k1k1 -k 2 k3k3 k1k1 k3k3 Time Frequency Detection

57 Detuning from a probe carrier frequency (Δ) 0 Spectral Distribution of the Signal Produced by a Fundamental Mode In TR-DFWM, we have shown that because of the quadratic dependence on the polarization, fundamental modes may be seen only after linearization of the signal, i.e. by heterodyne detection

58 Spectral Distribution of the Signal Produced by Intensity Beat Detuning from a carrier (Δ) 0

59 Identification of signals: Fundamental modes of frequency Ω 1 are spectrally peaked at Ω 1 /2 Intensity beats at frequency (Ω 1 ± Ω 2 ) spectrally peaked at [ (Ω 1 -Ω 2 )/2 ] Based on this result, it is now possible to directly and unambiguously identify the character of each peak

60 TFD analysis: CCl 4

61 Homodyne beat : (Ω 1 -Ω 2 )=99cm -1 Detuning : (Ω 1 +Ω 2 ) /2=260 cm -1 Ω 1 = 210 cm -1 ; Ω 2 = 309 Homodyne beat : (Ω 3 -Ω 4 ) = 246cm -1 Detuning : (Ω 3 +Ω 4 )/2 =337 cm -1 Ω 4 = 214 cm-1 ; Ω 3 = 460

62 Homodyne beat : (Ω 5 -Ω 6 ) = 147cm-1 Detuning : (Ω 5 +Ω 6 ) /2 = 385 cm -1 Ω 5 = 317 cm -1 ; Ω 6 = 464 cm -1 210309 317464 214460 DERIVED fundamental frequencies 214313460 KNOWN CCl 4 Modes TFD analysis: CCl 4

63 Thank you


Download ppt "Combined Time Frequency Detection (TFD) by Single Shot Four Wave Mixing Yehiam Prior and Andrey Shalit Department of Chemical Physics Weizmann Institute."

Similar presentations


Ads by Google