Presentation is loading. Please wait.

Presentation is loading. Please wait.

Photocatalytic processes to remove pollutants from water

Similar presentations


Presentation on theme: "Photocatalytic processes to remove pollutants from water"— Presentation transcript:

1 Photocatalytic processes to remove pollutants from water
Workshop on advanced oxidation processes for industrial wastewater Photocatalytic processes to remove pollutants from water Santi Esplugas Chemical Engineering Department. University of Barcelona SPAIN Madrid , October 4th 2007

2 Structure of the Presentation
Introduction Advanced Oxidation Processes Photochemical Oxidation Processes - UV Photolysis - H2O2/UV - Ozone/UV - TiO2 Photocatalysis - PhotoFenton Conclussions and Recommendations Photocatalysis

3 Introduction: REMOVAL OF POLLUTANTS FROM WATER
*PHYSICAL METHODS (non destructive ): Mechanical separation Sedimentation Filtration Adsorption and ion exchange Reverse osmosis *CHEMICAL METHODS (destructive ): Precipitation Ion exchange Chemical Oxidation (and reduction): biochemical oxidation chlorine hydrogen peroxide ozone hydroxyl radical (OH •) AOPs

4 OH• Characteristics (redoxpotential)
* very powerful oxidation compound (F2 > OH• > O3 > ) * oxidation power related to chlorine (Eº = 1.36 V) Rate constants of °OH radical with organics: x 107 mol-1 L s-1

5 OH• Characteristics (no especific oxidant)
Compounds that can be oxididez by OH radicals Acids Formic, gluconic, lactic, malic, propionic, tartaric Alcohols Benzyl, tert-butyl, ethanol, ethylene glycol, glycerol, isopropanol, methanol, propenediol Aldehydes Acetaldehyde, benzaldehyde, formaldehyde, glyoxal, isobutyraldehyde, trichloroacetaldehyde Aromatics Benzene, chlorobenzene, chlorophenol, creosote, dichlorophenol, hydroquinone, p-nitrophenol, phenol, toluene, trichlorophenol, xylene, trinitrotoluene Amines Aniline, cyclic amines, diethylamine, dimethylformamide, EDTA, propanediamine, n-propylamine Dyes Anthraquinone, diazo, monoazo Ethers tetrahydrofuran Ketones Dihydroxyacetone, methyl ethyl ketone

6 OH• Characteristics (no especific oxidant)
Scavenger effect (at high concentration) Inorganic ions: Sulfate, chloride, carbonate,.. Alcohols: methanol, terbutanol,.. Hydrogen Peroxyde 6

7 Biodegradability enhancement by AOPs
dyes WO pulp&paper Fenton textil O3 surfactants

8 (light conditions) atmospheric pressure and room temperature
AOP classics homogeneous heterogeneous Photolysis O3/UV TiO2/UV Fe+3/UV/H2O2 O3/H2O2 O3 sonolysis electrolysis Se divide principalmente en dos partes, una primera parte donde se estudiaran los procesos llamados homogéneos, y son aquellos procesos donde todos los reactivos son líquidos o en disolución. Y una segunda parte dedicada a los procesos heterogéneos, se trata de reacciones gas-liquido, donde el reactante gaseoso es el ozono. Los tratamientos estudiados en la primera parte son la fotolisis mediante radiación ultravioleta, y el proceso que combina radiación ultravioleta y un oxidante ( en este caso se utilizaron peróxido de hidrogeno y sales de hierro III). En cuanto a la segunda parte se estudiaron los procesos de ozonización. Ozonización combinada con radiación UV, y ozonización combinada con peróxido de hidrogeno, también se realizaron experimentos combinando ozono, radiación y peróxido a la vez. Todos estos tratamientos, están basados principalmente en el poder oxidativo del radical ·OH, considerado uno de los oxidantes más potentes. radiation UV Radical ·OH (light conditions) atmospheric pressure and room temperature

9 Suitability of water treatment according to COD
10 100 1000 Classical AOP Wet Oxidation Incineration COD (g.L-1) 20 200 autothermic 2 Andreozzi, R., Caprio, V., Marotta, R. (1999) Advanced Oxidation Processes (AOP) for water purification and recovery”, Catalysis Today 53 (1) 51-59

10 COD removal - AOPs Applications
AOPs application regions with regards to economic consideration From these examples of applications and considering all others we know today from different sources we can draw out a figure of the use of AOP for COD removal in waste water treatment. With regards to economic consideration it appears than ranging few 10 mg/L to few 100mg/L the UV based systems and O3/H2O2 combination are set out. The Fenton process and pressurised Fenton processes are much more dedicated to COD ranging 800mg/l to 30000mg/L while the WAO process since to get interest for COD of 30000mg/L up to mg/L. Above this value incineration should be the ultimate solution. It is clear than higher is the COD and lower is the quantity of flow which is really economically acceptable. To complete this purpose about waste water treatment we can mention the case of concentrate coming from gas treatment for hydrophilic COV with a chemical washing process. In such case in which we get dirty water which contains few g/l of COV (case of formaldehyde and phenols) and with a small volume (few m3/d) AOPs can be used to recover the washing water with the same figure. Suty,H., Coste, M. “The AOPs tools in the treatment of waste water effluents” 3rd European Meeting on Solar Chemistry and Photocatalysis :Environmental Applications Barcelona, 30 June and 1, 2 July 2004

11 Photochemical Oxidation Processes
PHOTOCHEMICAL PROCESSES WAVELENGTH UV (photolysis) < 190 nm H2O2/UV < 300 nm O3/UV < 320 nm O3/H2O2/UV TiO2/UV (photocatalysis) < 400 nm Fe+2/H2O2/UV (photoFenton) < 550 nm Fe+2/e-/UV (photoelectroFenton)

12 PHOTOCHEMISTRY -9 12

13 Energy of photon with wavelength  E = h.c/
PHOTOCHEMISTRY Energy of photon with wavelength  E = h.c/ h (Planck) = J.s c (light) = m/s = m Einstein = 1 mol of photons Quantum yield  (stoichiometric coefficient)  = mol reacted/mol of photons absorbed 13

14 PHOTOCHEMISTRY UV radiation ~ 100 - 400 nm visible ~ 400 - 700 nm
near infrared ~ nm far infrared nm UVA – 400 nm UVB – 320 nm UBC – 280 nm UV-VIS ENERGY ENERGY 200 nm kcal.mol kJ.mol-1 700 nm kcal.mol kJ.mol-1 UV VISIBLE wavelength, nm 14

15 PHOTOCHEMISTRY photon balance x
q =photon flow density vector, Einstein/(m2.s) = absorbance, cm-1 x = position, cm x 0,01 0,9900 0,0100 0,1 0,9048 0,0952 1 0,3679 0,6321 3 0,0498 0,9502 9 0,0001 0,9999 15

16 SOLAR PHOTOCHEMISTRY 4 - 7% UV radiation ( <400 nm) 16

17 WATER PHOTOLYSIS O-H bond strength in H2O: ca. 497 kJ mol -1
(corresponding wavelength = 240 nm) H2O + hν → °OH + H° Φ = 0.42 at 172 nm H° + O2 → HO2° Termination reactions: 2 °OH → H2O2 2 H° → H2 HO2° + °OH → H2O + O2 2 HO2° → H2O2 + O2 240 nm 17

18 WATER PHOTOLYSIS VCV lamps ( = 180 nm) Excimer lamps
Advantage: no gaseous, liquid or solid additive Disadvantage: very limited penetration depth of the photons high cost of 180 nm radiation (Xe lamp) ozone production Potential application: microelectronics, gas treatment 18

19 H2O2 PHOTOLYSIS O-O bond strength in H2O: ca. 213 kJ mol -1
(corresponding wavelength = 560 nm) H2O2 + hν → 2 °OH pKa = 11.6 HO2- + hν → °OH + O°- O°- + H2O → °OH + OH- ε254 H2O L mol-1 cm-1 HO L mol-1 cm-1 extinction coefficient absorbance (cm-1) concentration 19

20 H2O2 PHOTOLYSIS Drawbacks Advantages handling/safety precautions
no residues H2O2 is miscible with H2O H2O2 is readily available, transportable, storable handling/safety precautions very weak absorption except at high pH (several tens of kW-lamps) ; inner filter effect by organics needs UVC (254 nm). Gemicidal °OH scavenging by H2O2 (°OH + H2O2 → HO2° + H2O) Drawbacks Advantages 20

21 OZONE/UV Ozone does not need radiation (dark) to produce OH radicals
O3 stripped Direct-O3 reaction O3 (l) Mox +M OH P R OH- or R +Si O3 (g) Chain reaction Radical-type reaction R = free radicals, which catalyze the ozone decomposition M = solute Si = free radical scavenger Mox = oxidized solute P = products, which do not catalyze the ozone decomposition 21

22 OZONE/UV Absorbs < 320 nm (UVB-UVC) ε254: 18.6 for O3 L mol-1 cm-1
Relative absorbance wavelength, nm 320 nm ε254: 18.6 for O3 L mol-1 cm-1 concentration (L mol-1) absorbance (cm-1) extinction coefficient 22

23 OZONE/UV mechanism hydroxyl radical hydroperoxyl radical scavenger 23

24 OZONE/UV Advantages Disadvantages no residues
easy O3 dosification UV absorption higher than that of H2O2 (0.1 kW-lamps) Disadvantages need to produce O3 (but bactericidal use of O3) necessity of destroying residual gaseous O3 efficiency limited by O3 hydrosolublity, gas-liquid transfer and scavenging of °OH (°OH + O3 → HO2° + O2) Problems Unwanted stripping of VOCs Br- + 3 O3 → BrO O2 (overall reaction) 24

25 Photocatalysis Heterogeneous photocatalysis
Zeolite with photosensitizers Semiconductor based catalyst: TiO2, ZnO, CdS Homogeneous photocatalysis Photosensitizers (ruthenium(II) poly(pyridyl),...) PhotoFenton Fe+3/UV/H2O2 25

26 Zeolite with photosensitizers
Fe2+ N [Fe(bpy)3] (1 nm) 2,2‘ - bipiridin (bpy) Zeolite 26

27 Zeolite with photosensitizers
Absorbance 27

28 TiO2/UV good UV absorption low quantum yield (  < 0.03) 28

29 TiO2/UV Advantages Disadvantages
No consumable additive Use of Solar UV Simplicity  (easy maintenance). Robustness. Flexibility Much lower sensitivity to pH than UV-AOPs based on H2O2 , O3 Reduction of some pollutants: Mn+, CCl4 Disadvantages Separation of the catalyst from the solution UV irradiation is poorly utilized by TiO2 despite high absorption Poisoning of catalyst by organic matter. Low quantum yield 29

30 mechanism through de Fe(IV) ??
PhotoFenton T mV pH H 2 O OH Fe 3+ 2+ Fenton = Fe+2-H2O2 mechanism through de Fe(IV) ?? 30

31 Fenton mechanism 31

32 Fenton Advantages Disadvantages Operation pH 2-4 (optimal =3)
Very cheap Simplicity  (easy maintenance). Robustness. Flexibility Disadvantages Operation pH 2-4 (optimal =3) Generation of sludge through the removal of iron ions. Exploration of Fenton at different pH (neutral and basic) under research (iron complexes, Cu,..) Possibility of supporting Fe ions on a solid under research 32

33 PhotoFenton Fe+3/UV/H2O2
Fe2(SO4)3 UV lamps (360 nm) Fe(III) in the presence of UV : Fe3+(aq) + H2O + hn OH· + Fe2+ +H+ quantum yield for the formation of Fe(II) at 313 nm 0.017 at 360 nm Faust, B. C.; Hoigne, J., Atmos. Environ. 24A (1990) pp Magnetic Stirrer 33

34 PhotoFenton Fenton Fe(III) in the presence of UV :
Fe3+(aq) + H2O + hn OH· + Fe2+ +H+ Fenton 34

35 °OH radicals are not the only active species
PhotoFenton Additional reactions in Photo-Fenton Fe3+ + H2O2 → H+ + Fe(HO2)2+ Fe(HO2)2+ + hν → Fe(HO2)2+* Fe(HO2)2+* → FeIII-O° ↔ FeIV=O + °OH Fe(HO2)2+* → FeII + HO2° °OH radicals are not the only active species UV-visible photodegradable compounds 35

36 Solar PhotoFenton parabolic CPC PSA – Almeria 36

37 PhotoFenton Advantages Disadvantages Operation pH 2-4 (optimal =3)
Very cheap Simplicity  (easy maintenance). Robustness. Flexibility Increase mineralization (TOC reduction) Use of visible radiation Disadvantages Operation pH 2-4 (optimal =3) Generation of sludge through the removal of iron ions. Cost of UV-visible lamps Waters with suitable UV light transmission Fouling of the surface of UV tubes 37

38 SUMMARY Photochemical Oxidation Processes
Limitations of using Photoxidation Low ε (H2O2) Gas-liquid transfer (O3) Charge recombination (TiO2) Limited water volume (H2O-VUV) Rate decreases due to °OH scavenging by the sensitizer (H2O2, O3) products (HCO3-/CO32-, SO42-, HxPO43-x) the reactant (Fe2+) Advantadges High oxidizing power No residues (except homogeneous Photo-Fenton) Disadvantages Cost of UV-Visible radiation Waters with suitable UV light transmission Good chance for coupling AOP with biological treatment 38

39 sequencing photoreactor + bioreactor
Photoreactor 1.5 L Black blue lamps (3 x 8W, 360 nm) = 6 Einstein/s 39

40 sequencing photoreactor + bioreactor
Thermostatic Bath Air 27ºC Volcanic stones Neutralizing stage H2O2 FeSO4 UV UV lamps Magnetic Stirrer 40

41 Photochemical Oxidation Processes
Application fields Because of the use of photons: low water amounts or flow rates Because of low oxidizing species production: low pollutant concentrations 41

42 members of the group PhD Santiago Esplugas Jaime Giménez
Esther Chamarro Carme Sans Bsc-Engineer Bernardí Bayarri Alessandra Diniz Coelho Bruno Domenjoud Marc Esplugas Renato Falcao Óscar González Maria Homs Fabiola Mendez Mar Mico Maria Navarro

43 Thank you


Download ppt "Photocatalytic processes to remove pollutants from water"

Similar presentations


Ads by Google