Presentation is loading. Please wait.

Presentation is loading. Please wait.

Совместные эксперименты ЛНФ ОИЯИ с зарубежными лабораториями в области нейтронной ядерной физики - статус и перспективы.

Similar presentations


Presentation on theme: "Совместные эксперименты ЛНФ ОИЯИ с зарубежными лабораториями в области нейтронной ядерной физики - статус и перспективы."— Presentation transcript:

1 Совместные эксперименты ЛНФ ОИЯИ с зарубежными лабораториями в области нейтронной ядерной физики - статус и перспективы

2 Основные направления сотрудничества Фундаментальные симметрии, свойства нейтрона, эксперименты с УХНФундаментальные симметрии, свойства нейтрона, эксперименты с УХН Исследования по физике деленияИсследования по физике деления Исследования захвата нейтронов с вылетом заряженных частицИсследования захвата нейтронов с вылетом заряженных частиц Ядерные данныеЯдерные данные Прикладные исследованияПрикладные исследования

3 Cooperation and subjects Russia-USA collaboration DIANNA (JINR, RFNC-ARRITP, TUNL, Gettysburg College) The subject of this collaboration is a Direct measurement of the neutron- neutron scattering cross-section at the reactor YAGUAR, Snezhinsk Cooperation with French centers in Grenoble (ILL and LPSC) covers several subjects: Investigation of low-energy neutron (cold, ultracold) interaction with nanoparticles on surface and in volume; Developing of new ultracold neutron spectrometer GRANIT for investigation of neutron transitions between quantum state in the Earth’s gravitational field; Study of a new ultracold neutron (UCN) source aiming at highest UCN density/flux JOINT INSTITUTE FOR NUCLEAR RESEARCH FRANK LABORATORY OF NEUTRON PHYSICS

4 Status of the experiment on direct measurement of neutron-neutron scattering Measurements 2008 0 20 40 Detector count rate, n/ms Preliminary simulation N exp. / Nnn, sim.  30 ! Analysis (2008-2009) - signal energy dependence; - time-of-flight spectra; - desorption simulation. Conclusion More probable reason is gas surface desorption Test and investigation measurement mSec P 0 ~5  10 -7 Torr PxPx Reactor Stainless steel tube L~1 m,  6 cm T~900ºC 2 m ~2 m TMP ~10 m Apparatus for test Measurements - manufactured; - tested; - calibrated. Measurements are scheduled at the end of 2010 TDS ЛМ-2 INFICON gauge pumping gas V~3.2  10 3 cm 3 JOINT INSTITUTE FOR NUCLEAR RESEARCH FRANK LABORATORY OF NEUTRON PHYSICS

5 Investigation of low-energy neutron (cold, ultracold) interaction with nanoparticles on surface and in volume It was shown experimentally that powder of nanoparticles could be used as a effective reflector for very cold neutrons at any incidence angles and as a reflector for cold neutrons at glancing over critical angles. JOINT INSTITUTE FOR NUCLEAR RESEARCH FRANK LABORATORY OF NEUTRON PHYSICS Possible applications of this phenomena are under investigation. Reflectivity~30%

6 Developing of new ultracold neutron spectrometer GRANIT for investigation of neutrons transition between quantum state in Earth’s gravitational field Recently quantum states of neutrons in the Earth’s gravitational was observed. JOINT INSTITUTE FOR NUCLEAR RESEARCH FRANK LABORATORY OF NEUTRON PHYSICS 1 43 2

7 Now the GRANIT spectrometer is under construction at ILL (Grenoble, France) to measure the resonance transitions between the gravitationally bound quantum states of neutrons JOINT INSTITUTE FOR NUCLEAR RESEARCH FRANK LABORATORY OF NEUTRON PHYSICS Precise measurement of the states position could be a fine tool for investigation of short-range interactions (in particular spin-dependent interactions), for studying the interaction of a quantum system with a gravitational field, for searches of the Standard model extensions, for the unique possibility to check the equivalence principle for an object in a quantum state and for studying various quantum optics phenomena. Now the spectrometer source is being put in operation. The first measurements are scheduled to December 2010.

8 Study of a new ultracold neutron (UCN) source aiming at highest UCN density JOINT INSTITUTE FOR NUCLEAR RESEARCH FRANK LABORATORY OF NEUTRON PHYSICS Idea: Advantages: Storage of neutrons (increasing of their flux) Increasing 9Å neutron flux by spectrum cooling Does not dilute flux density because of beam divergence Improve UCN storage time due to increase in diameter Possibility to use multi-phonon cooling Avoiding massive flanges in beam (producing gamma radiation) Neutrons from cold or thermal source Moderator-reflector Be (BeO) He-II We have to choose the best reflector/moderator, to choose optimal parameters, and perform test measurements.

9 H E0  EE0  E E 0 + mgH E 0 – ħ  1 + mgH HH E 0 – ħ  2 + mgH E Free Fall Experiment with UCN (2006) A.I.Frank, G.V.Kulin, D.V.Kustov, A.N.Strepetov, M.Jentschel, P.Geltenbort m The gain in kinetic energy of freely falling neutrons m g g n h is compensated by a quantum of energy ħΩ, due to the phase modulation of the neutron wave A controlled decrease of the neutron energy is provided by diffraction on a rotating grating. Measurements of count rate dependence as distance between monochromator and analyzer were made for wide range of frequencies (45-105Hz). Two FPIs with variable distance between them Detector diffraction grating with radial groves A.I. Frank et al., JETP Lett. 86 (2007) 225.

10 10 Neutron interference filters will be used as a spectrometric device and the controlled variation of the neutron energy will be realized again by diffraction at a moving grating. The neutron energy will be measured by a specific time of flight method. Neutron flux will be modulated by a chopper and the phase  of the count rate modulation will be measured. first test on November-December 2010 The next experiment will be performed with a modified procedure using a new spectrometer (first test on November-December 2010). Phase is proportional to the time of flight . (here f is the frequency of the chopper operation) Count rate modulation measured in 2007. f = 105 Hz. t  0.11 сек. Estimated sensitivity 2  10 -4 (one cycle at PF2 ILL) Main benefits of the new method: Main benefits of the new method: The modulation phase did not sensitive to the fluctuation of the background and the detector efficiency The modulation phase did not sensitive to the fluctuation of the background and the detector efficiency Due to linear dependence of the phase on filter position it’s enough to measure the phase in few points only. Due to linear dependence of the phase on filter position it’s enough to measure the phase in few points only. Due to the high degree of monochromatization ~2% relatively large modulation frequency may be used. The period of modulation may be 7-10 times less than neutron time of flight Due to the high degree of monochromatization ~2% relatively large modulation frequency may be used. The period of modulation may be 7-10 times less than neutron time of flight A.I.Frank, G.V.Kulin, S.V. Goryunov, D.V.Kustov, A.N.Strepetov, M.Jentschel, P.Geltenbort Planned Free Fall Experiment with UCN (Experiment 2)

11 Научное сотрудничество ОИЯИ-ПИЯФ-ИЛЛ Основные участники: Лаборатория нейтронной физики им. И. М. Франка, ОИЯИ, Дубна, Россия: Ю. М. Гледенов, П. В. Седышев. С.-Петербургский институт ядерной физики РАН, Гатчина, Россия: В. А. Весна, Е. В. Шульгина. Institut Laue-Langevin, Grenoble, France: V. V. Nesvizhevsky, A. K. Petukhov, T. Soldner, O. Zimmer. Основное направление работ: Исследование эффектов нарушения пространственной четности в реакциях с медленными поляризованными нейтронами. С 2001 по 2009 гг. проводились эксперименты по исследованию эффектов нарушения пространственной четности на легких ядрах: измерение P-нечетной асимметрии эмиссии тритонов в реакции 6 Li(n,  ) 3 H, измерение P-нечетной асимметрии испускания  -квантов в реакции 10 B(n,  1 ) 7 Li*  7 Li+  с целью определения слабой  -мезонной константы связи. Поиск нейтральных токов в слабых NN-взаимодействиях. Проверка адекватности модели одномезонного обмена для описания слабых NN- взаимодействий.

12 N N N N , ,  PVPC  0, ,  ’ - exchange is forbidden, due to the CP-invariance;  - exchange is strongly suppressed  ± -  T=1  -  T=0, 1, 2  -  T=0, 2  T = 0, 2 – charged currents  T = 1 – neutral currents The MNN coupling constants are calculated from the flower-conserving part of the weak interaction. Due to uncertainties in the effects of strong QCD, the range of predictions is broad. One meson exchange model: R. J. Blin-Stoil. Phys. Rev. 118 (1960) 1605; G. Barton. Nuovo Cimento 19 (1961) 512; B. H. J. McKellar. Phys. Lett. B26 (1967) ; E. M. Heinly. Ann. Rev. Nucl. Part. Sci.19 (1969) 367; E. Fischbach, D. Tadic. Phys. Rep. C6 (1973) 123; M. Gari. Phys. Rep. C6(1973) 318; B. Desplanques, J. Donoghue, B. Holstein. Ann. Phys. 124 (1980) 449; V. M.Dubovik, S. V. Zenkin. PEPAN 18 (1987) 575; B. Desplanques. Phys. Rep. 297 (1998) 1 PNC NN potential is characterized by weak meson exchange coupling constants:

13 The PV observable is given by a linear combination of weak MNN constants: Weak meson-nucleon coupling constants calculated within different models (in units of 10 -7 ): DDH – B. Desplanques, J. F. Donoughu, B. R. Holstein; DZ – V. M. Dubovik, S. V. Zenkin; FCDH - G. B. Feldman, G. A. Crawford, J. Dubach, B. R. Holstein; KM – N. Kaiser, U. G. Meissner. G. A. Lobov: f  = 3.4∙10 -7 General task: using this theory to calculate electroweak effects in the NN interaction and to determine the weak couplings from experiment. Problems: theoretical – for more than a few bodies the nuclear wave functions can not be exactly calculated; experimental – the small size of weak amplitudes relative to strong amplitudes ~10 -7.

14 best values The PNC constraints from different experiments and f  problem. Main contribution is due to charged currents. Nonzero effect, manifestation of charged currents in NN interactions, good agreement with the DDH predictions. Effect is due to neutral currents, main contribution from  -exchange. No effect, no strong evidences for neutral currents, f  is much less than the DDH “best value”: -1.0∙10 -7  f   1.2∙10 -7 In order to solve this problem, one needs more independent interpretable experiments.

15 Light nuclei can be described in framework of the cluster and multi-cluster schemes: The interaction of neutrons with them is considered as a few-nucleon reaction, influenced by the potential of one or a few α-particles. N. N. Nesterov, I. S. Okunev. JETPh Let. 48 (1988): Expected value  t = -2.8·10 -7 (with DDH best values), contribution from  -exchange ~75%.  n  =760 b at E th V. A. Vesna, Yu. M. Gledenov, P. V. Lebedev- Stepanov, I. S. Okunev,A.V. Sinykov, Yu. M. Tchuvilsky, E. V. Shulgina.Phys. At. Nucl. 62 (1999) 522; S. Yu. Igashov, A. V. Sinykov, Yu. M. Tchuvilsky. In: Proc. ISINN-11. Dubna 2003, 34 Expected value   = 1.1  10 -7 (with DDH best values), contribution from  -exchange ~66%.  n  =3940 b at E th

16 1 2 3 4 5 6 7 PnPn nn 1 - polarizer; 2 - adiabatic spin- flipper; 3 - ionization chamber; 4 -  - detector; 5 - guiding neutron spin magnetic field; 6 - sample; 7 - Li beam stop; p n - neutron momentum;  n - neutron spin. Ionization chamber: 24 identical doubled sections. Targets - 450  g/cm 2 of LiF (95% 6 Li), size of 140х60 mm. LiF is evaporated onto 14  m Al-foil and covered with same foil in order to block  - particles. Targets absorbed 60% of beam intensity.  -Detectors: NaJ(Tl)  200 mm  100 mm. Sample: 50 g of 10 B, 85%, size 160  180  5 mm, 14  m Al-foil. Light detection - the “Hamamatsu” photodiodes S3204-04 (18 x 18 mm). Sample absorbed all neutrons. H – high-voltage electrode; C – signal electrode; T – target electrode. Distances: TC=CH=10.5 mm Working gas: Ar, p=2 at. U T =U H =-375 V, U C =0 V (trough the preamplifier) PF1B instrument of the ILL reactor, Grenoble, France. Averaged neutron wavelength n = 4.7 Å, polarization P = 95%. Integrated neutron flux at the sample: F n ~ (2 – 5)∙10 10 s -1. Measurements with 10 B: 2001, 2002, 2007, 2009. Measurements with 6 Li: 2002, 2005, 2006.

17 Integral method of measurement; special experimental technique and data treatment. [V. M. Lobashev. Phys. At. Nucl. 5 (1965) 957; V. M. Lobashev et. al Phys. Lett. (1967) 104; Yu. M. Gledenov et. al. NIM A350 (1994) 517. ] 1. Current method of the event detection. 2. Two-channel system. 3. Compensation for the reactor power fluctuations. 4. Reversal guiding neutron spin magnetic field at the detector. 5. “0” experiment. Current method: t I det K7K7 K6K6 K 10 Input Output to ADC Analog integrator Timing diagram

18 A typical signal at the entrance of an integrator Power of the ILL reactor neutron flux fluctuation as a function of frequency. V. A. Vesna et. al. PNPI Preprint 2697 (2006) Analog integrator: integration time 1c. Number of events ~10 10. Statistic error 10 -5. Flux fluctuations  F n /F n ~ 10 -3 – 10 -2 Two detector system. The signs of real P-odd effect in the detector channels are opposite at synchronous measurements. Compensation for the reactor power fluctuations. t I det det1 det2 L – compensation coefficient - is determined over a series single  i meeting the requirement of minimal subtraction dispersion. Dispersion reduction for compensated values ~factor of 60 in comparison with individual channels.

19 Main sources of apparatus asymmetry: signal of the flipper control; signals in the ground circuits; scattering electromagnetic fields of the working facilities. They are reduced by use of the two detector system, compensation method, and reversal guiding neutron spin magnetic field. The real P-odd effects at admixtures or constructed materials can not be compensated. Possible sources of P-odd admixtures for 6 Li measurements. 1. 8 Li,  -, E max = 16.0 MeV, T 1/2 = 0.84 s,  = -(0.08  0.01) 2. 20 F,  -, E max = 7.0 MeV, T 1/2 = 11.0 s,  - ? 3. 35 Cl(n,p) 35 S, E p = 0.6 MeV,  = -(1.5  0.34)·10 -4 4. Al, Ar, N: , , , p - ? For “0”-experiment all targets were additionally covered with 20  m. Al-foil. “0”-experiment for 10 B measurements. 1.Estimation of false P-odd effect caused by eventual impurities in the 10 B samples:  imp < 10 -8. 2Measurement with 14  m Al-foil :  0 = (0.6  4.0)  10 -8 ; 3.Measurement with the graphite sample:  n  = 3.8  10 -3 b;  s = 4.8 b;  (C) = (1.7  1.9)  10 -6 4.Estimation of false P-odd effect due to scattering in the 10 B samples:  sB = (2.7  3.0)  10 -9 5. Estimation of false P-odd effect due to scattering in the air:  sair = (3.5  3.9)  10 -8

20  PNC 00 PNPI, 1995 -(5.4  6.0)∙10 -8 (2.0  1.7) · 10 - 8 ILL, 2002 -(8.1  3.9)∙10 -8 ILL, 2005 -(9.3  2.5)∙10 -8 ILL, 2006 (0.0  0.5) · 10 - 8 -(8.6  2.0)∙10 -8 (0.2  0.5) · 10 - 8  PNC 00 2001- 2002 (2.7  3.8)∙10 -8 -(0.9  4.8) · 10 - 8 2007 (3.1  3.8)∙10 -8 (3.7  3.4) · 10 - 8 2009 -(2.0  2.5)∙10 -8 -(1.3  1.6) · 10 - 8 -(0.3  1.8)∙10 -8 -(0.4  1.4) · 10 - 8   = (0.7  2.3)  10 -8  t = - (8.8  2.1)  10-8

21

22 Публикации по работам коллаборации. 1.В. А. Весна, Ю. М. Гледенов, В. В. Несвижевский, А. К. Петухов, П. В. Седышев, Т. Солднер, Е. В. Шульгина. Измерение Р-нечетной асимметрии вылета  -квантов в реакции 10 B(n,  ) 7 Li  7 Li(о.с.). Известия А Н. Сер. физ. 67 (2003) №1, 118-122. 2.В. А. Весна., Ю. М. Гледенов, В. В. Несвижевский, А. К. Петухов, П. В. Седышев, Т. Солднер, Е. В. Шульгина, О. Циммер. Исследование асимметрии вылета тритонов в реакции 6 Li(n,  ) 3 H с холодными поляризованными нейтронами. Препринт ПИЯФ 2479 (2002). 3.A. Vesna, Yu. M. Gledenov, V. V. Nesvizhevsky, A. K. Petukhov, P. V. Sedyshev, T. Soldner, E. V. Shulgina. Measurement of the P-odd asymmetry of emitted  -quanta in the 10 B(n,  ) 7 Li*  7 Li(g.st.) reaction with polarized neutrons. ISINN-10. Neutron Spectroscopy, Nuclear Structure, Related Topics. (Dubna 2003) E3-2003-10, 52-59. 4.Yu. M. Gledenov, V. A. Vesna, V. V. Nesvizhevsky, A. K. Petukhov, P. V. Sedyshev, T. Soldner, E. V. Shul’gina, O. Zimmer. Investigation of the triton emission asymmetry in the 6 Li(n,  ) 3 H reaction with cold polarized neutrons. ISINN-11. Neutron Spectroscopy, Nuclear Structure, Related Topics. (Dubna: JINR, 2004) E3-2004-9, 26-33. 5.V. A. Vesna, Yu. M. Gledenov, V. V. Nesvizhevsky, A. K. Petukhov, P. V. Sedyshev, T. Soldner, E. V. Shul’gina, O. Zimmer. Recent results on the measurement of the P-odd asymmetry of emitted  -quanta in the 10 B(n,  ) 7 Li*  Li(g.st.) reaction with slow polarized neutrons. ISINN-11. Neutron Spectroscopy, Nuclear Structure, Related Topics. (Dubna: JINR, 2004) E3-2004-9, 52-56. 6.В. А. Весна, Ю. М. Гледенов, В. В. Несвижевский, А. К. Петухов, П. В. Седышев, Т. Солднер, О. Циммер, Е. В. Шульгина. Обнаружение Р-нечетного эффекта вылета тритонов в реакции 6 Li(n,  ) 3 H. Письма в ЖЭТФ 82 (8) (2005) 519-523. 7.В. А. Весна, Ю. М. Гледенов, В. В. Несвижевский, А. К. Петухов, П. В. Седышев, Т. Солднер, О. Циммер, Е. В. Шульгина. Нулевой эксперимент при изучении Р-нечетной асимметрии вылета тритонов в реакции 6 Li(n,  ) 3 H. Препринт ПИЯФ 2697 (2006) 17с. 8.В. А. Весна, Ю. М. Гледенов, В. В. Несвижевский, А. К. Петухов, П. В. Седышев, Т. Солднер, О. Циммер, Е. В. Шульгина. Испытание нового метода регистрации токовых сигналов с увеличенной частотой переключения поляризации нейтронов при измерении Р-нечетных эффектов. Препринт ПИЯФ 2708 (2007) 9c.

23 9.V. A. Vesna, Yu. M. Gledenov, V. V. Nesvizhevsky, A. K. Petukhov, P. V. Sedyshev, T. Soldner, E. V. Shul’gina, O. Zimmer. Observation of the P-odd asymmetry of triton emission in the 6 Li(n,  ) 3 H reaction with cold polarized neutrons. ISINN-14. Neutron Spectroscopy, Nuclear Structure, Related Topics. E3-2007-23 (Dubna 2007) 243-248. 10.A. Vesna, Yu. M. Gledenov, V. V. Nesvizhevsky, A. K. Petukhov, P. V. Sedyshev, T. Soldner, E. V. Shul’gina, O. Zimmer. “Zero” experiment and final result of the measurements of the P-odd asymmetry in the 6 Li(n,  ) 3 H reaction. ISINN-15. Neutron Spectroscopy, Nuclear Structure, Related Topics. E3-2008-26 (Dubna 2008) 332-338. 11. V. A. Vesna, Yu. M. Gledenov, V. V. Nesvizhevsky, A. K. Petoukhov, P. V. Sedyshev, T. Soldner, O. Zimmer, E. V. Shulgina. Measurement of the parity-violating triton emission asymmetry in the reaction 6Li(n, α)3H with polarized cold neutrons. Phys. Rev. C 77 (2008) 03550. 12.V. A. Vesna, Yu. M. Gledenov, V. V. Nesvizhevsky, A. K. Petukhov, P. V. Sedyshev, T. Soldner, E. V. Shul’gina. Measurement of the P-odd asymmetry of  -quanta from the 10 B(n,  ) 7 Li*  7 Li(g.st.) reaction at heightened frequency of neutron polarization switching. ISINN-16. Neutron Spectroscopy, Nuclear Structure, Related Topics. E3-2009-33 (Dubna: JINR, 2009) 83-89. 13.V. A. Vesna, Yu. M. Gledenov, V. V. Nesvizhevsky, A. K. Petukhov, P. V. Sedyshev, T. Soldner, E. V. Shul’gina. Measurement of the parity-violating asymmetry in the reactions of cold polarized neutrons and light nuclei 6 Li, 10 B. Nucl. Phys. A 827 (2009) 425-427. 14.V. A. Vesna, Yu. M. Gledenov, V. V. Nesvizhevsky, A. K. Petukhov, P. V. Sedyshev, E. V. Shulgina. Measurement of P- odd asymmetry of  -quanta emission in the nuclear reaction 10B(n,a)7Li*-> 7Li(g.s.). NIM A 611 (2009) 244-247.

24 Дальнейшие перспективы: 1.Измерение асимметрии в полном сечении на естественном свинце. 2.Продолжение измерения асимметрии  -квантов в реакции с 10 B. 3.Рассматривается возможность (нужно теоретическое обоснование целесообразности эксперимента в смысле получения новых данных по слабым константам связи, методика и аппаратура существует) измерения асимметрии продуктов реакции 3 Hе(n,p)t.

25 Institute of Experimental and Applied Physics Czech Technical University in Prague: Carlos Granja, Jan Jakůbek, Stanislav Pospíšil, Zdeněk Vykydal FLNP:Yu.N. Kopatch, S.A. Telezhnikov Position–, Spectral– and Time– Sensitive Fission Fragment Spectroscopy with Medipix2 & TimePix Pixel Detectors Detector chip Medipix-2 chip Bump-bonding  Planar 300 or 700  m thick silicon pixel detector (also GaAs, CdTe, or n converter) Bump-bonded to Medipix readout chip containing amplifier, discriminator and counter for each pixel. Investigation / search for rare fission modes

26 Position–sensitive spectroscopy: Fission fragments Detection of fission fragments: 252 Cf  ’s fragment

27 Kinetic energy distribution of fission fragments (from analysis of fragment cluster area) Position–sensitive spectroscopy: Fission fragments C. Granja, Z. Vykydal, Y. Kopatch, J. Jakubek, S. Pospisil, S.A. Telezhnikov, NIM-A 574 (2007) 472-478

28 Experiments –Spontaneous fission ( 252 Cf) –Coincidence measurements –Angular correlations Data evaluation –Precise (low-energy) calibration –Event (cluster) shape (2D & 3D) fitting Rare fission processes (ternary, quaternary) Future Main aims: 1.Detector development 2.Search/study of rare fission modes

29 Investigations of TRI and ROT effects in neutron-induced ternary fission PNPI Gatchina (Russia) Univ. Tübingen (Germany) IKP TU Darmstadt (Germany) ILL Grenoble (France) KRI St.Petersburg (Russia) Univ. Jyväskylä (Finland) FLNP JINR Dubna (Russia) Experiments are performed at high flux reactor ILL Grenoble

30 The TRI-asymmetry in the counts rates LF HF TP σ+σ+ σ–σ– What is measured: two Fission Fragments (LF and HF) and a Ternary Particle (TP) Variations of the count rates depending on the neutron polarization

31 The ROT- asymmetry in the counts rates LF HF TP σ+σ+ σ–σ– What is measured: two Fission Fragments (LF and HF) and a Ternary Particle (TP) Variations of the count rates depending on the neutron polarization

32 Experimental results (2005 – 2010) TRI and ROT- effects parameters ReactionJS ROT ( o )D TRI (×10 3 ) 235 U(n,f)3 –, 4 – (0.215  0.005) + (1.7  0.2) 233 U(n,f) 245 Cu(n,f) 2 +, 3 + (0.02  0.03) – (3.90  0.12) (1,30  0.12) 239 Pu(n,f)0 +, 1 + (0.020  0.003) – ( 0.23  0.09) (2008) – ( 0.08  0.11) (2002)

33 Experimental studies Present: Measurement of the Т-odd correlation coefficient for various isotopes (233U, 235U, 239Pu) Studies of the asymmetry dependences on fission products parameters : –LCP type (alpha-particles, hydrogen isotopes), –LCP energy, –Parameters of main FF (masses, energies), –Relative angles involved between particles and neutron spin Future: Study of dependence of the effects on the polarized neutron energy → dependence on the quantum numbers J  K (resonance parameters)

34 Investigation of (n,  ) Reaction in the MeV Neutron Energy Region Yuri Gledenov 1, Guohui Zhang 2, Paul Koehler 3, Milana Sedysheva 1, Jiaguo Zhang 2, Hao Wu 2, Jiaming Liu 2, Jinxiang Chen 2, Gonchigdorj Khuukhenkhuu 4, Pavel Szalanski 5 Since March, 1990; Protokol JINR-Peking University active (15.03.2005 -31.12.2012) 1 JINR, Dubna 141980, Russia 2 State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871, China 3 Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 7831, USA 4 Nuclear research Centre, National University of Mongolia, Ulaanbaatar, Mongolia 5 University of Lodz, Institute of Physics, Lodz, Poland 6/13/2016

35 ( neutron, charge particle) - light > - middle nuclei G. Zhang, et al., Nucl. Sci. Eng., 156, 115 (2007). G. Zhang, et al., Nucl. Sci. Eng., 160, 123 (2008). G. Zhang, et al., Eur. Phys. J. A, 43, 1 (2010). > - heavy nuclei Yu.M.Gledenov, et al. Phys. Rev. C V.80, P. 044602 (2009) Yu.M.Gledenov, et al. Phys. Rev. C V.82, P. 014601 (2010)

36 researching of nuclear reaction mechanism, determination of parameters of optical model potential nuclear astrophysics, nuclear engineering, estimation of radiation damage in structural materials of nuclear reactors are important for: (n,  ) Reaction for Rare-Earth Elements ( 143 Nd, 147,149 Sm)

37 143 Nd(n,  ) 140 Ce Present cross sections compared with existing evaluations and measurements

38

39 There are very large differences between different evaluations, especially in the region of the present measurements, and that no evaluation is consistent with all the available data. In an attempt to obtain better agreement with the data, the TALYS code was used to calculate cross sections and forward/backward ratios.

40

41

42 Conclusion Our cross section data are compared with available evaluations and experiments. There are very large differences between different evaluations. Further measurements are needed. These exploratory calculations indicate a considerable part of a direct component, new measurements to check the results near 14 MeV as well as in the energy region between those data and the present results would be worthwhile.

43 Present cross sections of the 67 Zn(n,a) 64 Ni reaction compared with existing data

44 Фундаментальные и прикладные исследования (n,  ) реакций Лаборатория нейтронной физики ОИЯИ Department of Physics,Kyuongpook National University, (Republic of Korea), Department of Physics, Kyuongpook National University, (Republic of Korea), Department of Physics, Pohang University of Science and Technology, (Republic of Korea)

45 Тема исследований: Измерение сечений радиационного захвата нейтронов для пополнения международных баз ядерных данныхИзмерение сечений радиационного захвата нейтронов для пополнения международных баз ядерных данных Изучение угловых корреляций в (n,  ) реакциях вблизи нейтронных р-волновых резонансов с целью проверки временной инвариантностиИзучение угловых корреляций в (n,  ) реакциях вблизи нейтронных р-волновых резонансов с целью проверки временной инвариантности

46 Детекторы и аппаратура: 12 сцинтилляционных детекторов на основе кристаллов BGO 7.5  5  5 см 3 и ФЭУ Hamamatsu H719512 сцинтилляционных детекторов на основе кристаллов BGO 7.5  5  5 см 3 и ФЭУ Hamamatsu H7195 Система сбора и анализа данных на основе 2х F-ADC (8 каналов, 100 МГц, 10 бит)Система сбора и анализа данных на основе 2х F-ADC (8 каналов, 100 МГц, 10 бит)

47 «4  »-конфигурация детектора для измерения сечений радиационного захвата Setup1 Вид вдоль пучка Сборка на нейтронном пучке Pohang Neutron Facility

48 Конфигурация детекторов для измерения угловой асимметрии выхода  -квантов вперед-назад Принципиальная схема 12-детекторная схема From: 이만우 [mailto:mwlee@knu.ac.kr] Sent: Saturday, September 18, 2010 6:01 AM To: Shvetshov Cc: 김귀년 Subject: About 2011 ISINN and Fe total and capture cross section Dear Valery, How are you? We are preparing to make new 12 BGO detector system for measuring a capture cross section. We would like to do an experiment at IREN for natural Fe capture measurement. Therefore I would like to visit JINR during 2011 ISINN and discuss about the experiment at IREN. Could you give me a comment on this? Best regards, Manwoo Lee

49 Прикладные исследования НАА – сотрудничество с Болгарией, Румынией, Грузией, Польшей, Египтом, Сербией, ЮАР; Анализ поверхностей методами рассеяния тяжелых заряженных частиц – сотрудничество с Польшей, Словакией, Украиной; Исследования по радиационной стойкости материалов, разработка методов получения изотопов – сотрудничество с ЮАР, Словакией; Методы ядерной планетологии – участие в космических проектах НАСА, Европейского космического агентства, Роскосмоса;

50 Принципы продолжения сотрудничества Продолжение сотрудничества с проведением выездных экспериментов на уникальных источниках нейтронов; Перенос тяжести экспериментальной программы там, где это возможно, на ИБР-2М и ИРЕН; Дальнейшее развитие сотрудничества со странами-участницами;

51


Download ppt "Совместные эксперименты ЛНФ ОИЯИ с зарубежными лабораториями в области нейтронной ядерной физики - статус и перспективы."

Similar presentations


Ads by Google