Presentation is loading. Please wait.

Presentation is loading. Please wait.

원자흡수분광분석법 (원리및 응용).

Similar presentations


Presentation on theme: "원자흡수분광분석법 (원리및 응용)."— Presentation transcript:

1 원자흡수분광분석법 (원리및 응용)

2 차 례 Optical Spectra의 역사 원자분광분석법의 기본원리 원자흡수분광기의 구조 원자흡수분광기의 기기적 특성
차 례 Optical Spectra의 역사 원자분광분석법의 기본원리 원자흡수분광기의 구조 원자흡수분광기의 기기적 특성 AAS의 측정 AAS의 오차 Flame vs Furnace AAS의 비교 다른 원자분광분석기와의 비교 AAS의 응용

3 Early History of Optical Spectra
Sir Isaac Newton discovers the solar spectrum in the late 1600’s Sunlight Prism

4 Fraunhofer Lines 1802 Wollaston discovered dark lines in solar spectrum Fraunhofer investigated lines in detail Lines due to sundown atmosphere absorbing light

5 Kirchhoff & Bunsen’s Experiment (1)
Light Source Burner Prism White Card Place Salt on Wire Loop and Hold in Flame Lens Dark Lines

6 Kirchhoff & Bunsen’s Experiment (2)
Used to Discover the Elements Rb and Cs Place Salt on Wire Loop and Hold in Flame Lens White Card Burner Emission Lines Prism

7 Absorption vs Emission
Fraunhofer Absorption Lines Cu Ba Na K Elemental Emission Lines 190 nm 900 nm Qualitative analysis of elements

8 Alan Walsh

9 Ground State Atom Orbitals Neutrons Protons Electrons

10 Absorption of Energy by Atom
Valence (Outer) Electrons Excited State Atom h Energy Absorbed Ground State Atom

11 Energy Level Diagram Electron Energy Transitions E4 E3 E2 E1 Eo
5 6 Resonance lines originate from ground state (Eo)

12 Atomic Absorption Process
Sunlight Sun Atmosphere Energy Transitions E3 E2 E1 Eo 3 2 1 4 1 2 3 4 Resonance lines must originate from ground state

13 Energy Level Diagram for Pb
Electron Energy Transitions E4 E3 E2 E1 Eo 202.2 217.0 261.4 283.3 Wavelength in Nanometers

14 Absorption Energy Diagram (Few Lines/Element)
Excitation E Ionization E3 } Excited States E2 c Energy E1 b a b c d a Eo Ground State

15 Emission Energy Diagram (Many Lines/Element)
Ionization E3 } Excited States E2 c Energy E1 b a b c d a Eo Ground State

16 Atomic Absorption Spectrometry
AAS intrinsically more sensitive than AES Similar atomization techniques to AES Addition of radiation source High temperature for atomization necessary : Flame and Electrothermal atomization Very high temperature for excitation not necessary Generally no plasma/arc/spark AAS

17 Atomic Absorption Io It Resonance Non-resonance Fill Gas Resonance

18 Flame AAS Simplest atomization of gas/solution/solid
Laminar flow burner – stable “sheet” of flame Flame atomization best for reproducibility Precision (<1%) Relatively insensitive – incomplete volatilization, Short time in beam

19 Laminar Flow Burner Cheap Simple Flame stability Low temperature

20 Flame Temperatures

21 Temperature Profiles of Natural gas/Air Flame
Primary combustion zone: Initial decomposition, molecular fragments, cool Interzonal region: Hottest, most atomic fragments, Used for emission/fluorescence Secondary combustion zone: Cooler, conversion of atoms to Stable molecules, oxides

22 Flame Absorbance Profile for Three Elements
Most sensitive part of flame for AAS varies with analyte Consequences? Sensitivity varies with element Must maximize burner position Makes multielement detection difficult

23 Electrothermal Atomizer
Entire sample atomized in short time (2000 – 3000 oC) Sample spends up to 1 s in analysis volume Superior sensitivity (10-10 – g analyte) Less reproducible (5 – 10 %RSD)

24 Types of Graphite Furnace
Graphite tube with L’vov platform Solid Sampling Accessory

25 Graphite Furnace Cross Section
External Ar gas prevents tube destruction Internal Ar gas circulates gaseous analyte

26 Four Step Sample Preparation
Dry – evaporation of solvents (10 - >100 s) Ash – removal of volatile hydroxides, sulfates, carbonates etc. ( s) (3) Fire/Atomizer – atomization of remaining analyte (1 s) (4) Clean Out

27 Furnace Thermal Stages
Dry Ash Atomize T E M P T I M E Clean Out Cool Down

28 Periodic Table H He Li Be B C N O F Ne Furnace Only
Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Furnace Only Flame & Furnace Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

29 Atomic Absorption Instrumentation
AAS should be very selective – each element has different set of energy levels and lines very narrow BUT for linear calibration curve (Beer’s Law) need bandwidth of absorbing species to be broader than that of light source : difficult with ordinary monochromator Solved by using very narrow line radiation sources Minimize Doppler broadening Pressure broadening Lower P and T than atomizer

30 Hollow Cathode Lamp 300 V applied between anode (+) and metal cathode (-) Ar ions bombard cathode and sputter cathode atoms Fraction of sputtered atoms excited, then fluoresce Cathode made of metal of interest (Na, Ca, K, Fe,…..) Different lamp for each element Restricts multielement detection Hollow cathode to Maximize probability of redeposition on cathode Restricts light direction

31 Multi-element HCL lamps

32 Pneumatic Nebulizers Concentric tube Cross-flow Fritted disk Babington

33 Single-beam Design AA Spectrometer
Signal at one wavelength often contains luminescence from interferent in flame Chemical interference: reverses atomization equilibria reacts with analyte to form low volatile compound Releasing agent – cations that react preferentially with interferent Protecting agent – form stable but volatile compounds with analyte ionization

34 Double-beam Design AA Spectrometer
Spectral interference - emission or absorption from interferent overlaps analyte Beam usually chopped or modulated at known frequency Signal then contains constant (background) and dynamic (time-varying) signals

35 Echelle Monochromator
Echelle grating with a prism, Focal plane

36 Multielement Instruments
Hitachi design Multiple HCLs with multiple detection systems

37 Thermo Jarrell Ash Design Perkin-Elmer Design
Multiple HCLs with one monochromator and PMT with a mirror and grating controlled by a galvanometer Multiple HCLs with an echelle monochromator and a CCD detector

38 Leeman Lab. Design SIMAAC Design
Multiple HCLs arranged on the focal plane of the grating Continuum source excitation with a monochromator and PMT

39 Photomultiplier Tube (PMT)

40 Solid State Detector

41

42 Beer-Lambert Absorbance Calculation
It A = log ( ) = abc A c Where: A = Absorbance a = absorptivity Io = Incident Light Intensity b = path length It = Transmitted Light Intensity c = concentration

43 Beer-Lambert Law Theoretical A = abc A B S Actual abc A CONC

44 % Transmittance vs ABS Transmittance Absorbance 10 % 1 1 % 2 0.1 % 3
100 % 10 % 1 % 0.1 %

45 Flame vs Furnace Sensitivity
100 g/L nm 0.936 Furnace Signal for 10 L Absorbance Flame Signal 0.004

46 Flame vs Furnace AAS Criteria Flame Furnace Elements 67 48
Sensitivity ppm-% ppt-ppb Precision good fair Interferences few many Speed rapid slow Simplicity easy more complex Flame Hazards yes no Automation yes yes (unattended) Operating Cost low medium

47 Flame vs Furnace Detection Limit Comparison
Element Flame (PPB) Furnace (PPB)* Ag As Bi Cd Cr Pb Zn *Results Based on 20 L Volume & D2 Peak Height ABS

48 Hydride Generation Techniques
A method for introducing samples containing arsenic, antimony, tin, selenium, bismuth, and lead into an atomizer as a gas Enhances D.L. by a factor of 10 to 100. 3BH4- + 3H+ + 4H3AsO3 3H3BO3 + 4AsH H2O

49

50 Continuum-source Correction
Alternate pass through: Continuum source of D2 and HCL radiation And then subtract AHCL – AD2 = Ac

51 Zeeman Background Correction
The  peak absorbs only the radiation that is plane polarized in a direction parallel to the external magnetic field The  peaks absorb only radiation polarized at 90 deg to the field A// – A = Ac

52 Smith-Hieftje Background Correction
Based on self-reversal or self-absorption A low current – A high current = Ac

53 AA vs. ICP-AES vs. ICP-MS: 비 교 표

54 기기에대한 결정 인자 분석시 샘플형태 분석물질의 농도 샘플 전처리정도 예 산 운용 유지비 분석상황

55 분 석 시 샘 플 형 태 액 상 고 상 (슬러지) 고상형태 (직접주입) Flame AA Vapor Generation AA
분 석 시 샘 플 형 태 액 상 Flame AA Vapor Generation AA Graphite Furnace AA ICP-AES ICP-MS 고 상 (슬러지) 고상형태 (직접주입) 고가의 악세사리(스파크 또는 레이저 시스템)

56 용 융 고 체 분 석 시 용융 고상함유% Vapor Generation GFAA Flame AA ICP-AES ICP-MS
용 융 고 체 분 석 시 용융 고상함유% Vapor Generation GFAA Flame AA ICP-AES ICP-MS % Solids

57 샘 플 효 율

58 원 자 화 / 이 온 화 효 율

59 최 소 샘 플 주 입 량

60 # 분 석 가 용 원 소 Vapor Generation GFAA Flame AA ICP-AES ICP-MS
# 분 석 가 용 원 소 Vapor Generation GFAA Flame AA ICP-AES ICP-MS # Elements

61 분 석 감 도 Vapor Generation AA GFAA Flame AA ICP-AES ICP-MS
분 석 감 도 Vapor Generation AA GFAA Flame AA ICP-AES ICP-MS ppt ppb ppm ng/L mg/L mg/L

62 직 선 동 적 범 위 Vapor Generation GFAA Flame AA (SIPS) ICP-AES
직 선 동 적 범 위 Vapor Generation GFAA Flame AA (SIPS) ICP-AES ICP-MS (Extended Range) Linear Dynamic Range

63 재 현 성 %RSD 5 GFAA Vapor Gen. ICP %RSD Flame AA ICP-MS -5

64 샘 플 주 입 량

65 분석 가용원소수 vs 농도 high Flame AA ICP-AES conc GFAA ICP-MS low low high
Vapor Generation low low high

66 요구되는 분석자의 능력 분 석 개 발 정 도 High Difficult ICP-MS Skill Level ICP-AES
Moderate GFAA Vapor Gen Flame AA Easy Low

67 간 섭 :분광학적(Spectral) High ICP-AES Degree of Interference Flame AA Vapor
Gen GFAA ICP-MS Low

68 간 섭 :주변물질(화학적l/물리적) High GFAA Degree of Interference Vapor Gen Flame
ICP-MS ICP- AES Low

69 간 섭 : 이 온 화 (Ionization) High Degree of Interference Flame AA ICP- AES
Vapor Gen GFAA ICP-MS Low

70 예 산 Vapor Generation Hg Analyzer GFAA Flame AA ICP-AES (Sequential)
예 산 Vapor Generation Hg Analyzer GFAA Flame AA ICP-AES (Sequential) (Simultaneous) ICP-MS $$ x 1,000

71 운 용 유 지 비 High ICP- AES ICP-MS GFAA Expense Vapor Gen Flame AA Low

72 분 석 비 용 25 개 원소 분석시 High GFAA Cost/Analysis Can do 25 elements
분 석 비 용 25 개 원소 분석시 High GFAA Cost/Analysis Can do 25 elements by vapor generation ICP- AES ICP- MS Flame AA Low

73 장 점 비 교(1) 원자흡수분광법(Flame & Furnace) 유도쌍 플라즈마법 (ICP-AES) 낮은분광학적간섭
장 점 비 교(1) 원자흡수분광법(Flame & Furnace) 낮은분광학적간섭 좋은 정밀도 사용이 용이 낮은 운용 유지비 적은예산에적합 유도쌍 플라즈마법 (ICP-AES) 효율적인원자여기상태 적은주변물질의 간섭 운용시 쉽게 접근 신속한 다원소분석 넓은 동적범위

74 장 점 비 교 (2) 유도쌍플라즈마 질량분석기 (ICP-MS) 증기 원자화장치 (Vapor Generation)
신속한 다원소분석 낮은 검출한계 월등한 동적범위 낮은 분광학적 간섭 동위원소 분석 증기 원자화장치 (Vapor Generation) 호한성: AA, GFAA, ICP or ICP-MS 적은 간섭

75 단 점 비 교 (1) 원자흡광분광광도계 (Flame and Furnace) 유도쌍 플라즈마법 (ICP-AES)
단일 원소 분석법 화학적 간섭 한정된 동적범위 가연성 가스 사용(flame) 유도쌍 플라즈마법 (ICP-AES) 분광학적 간섭 공간-의존 간섭(Spacial-dependent interferences) 고가의 운용비용(Ar소모) 고가의 장비

76 단 점 비 교(2) 유도쌍 플라즈마 질량분석기 (ICP-MS) 증기 원자화 장치 (Vapor Generation)
주변물질의 간섭 동중체(같은질양)간섭 떨림 크린룸이 필요 고가 장비 증기 원자화 장치 (Vapor Generation) 7가지원소에 한정 화학적 추출 전처리

77 The analysis of cement

78 Cold vapor determination of Hg

79 Cr in Saline water by GFAAS

80

81 Cr in urine sample Magnesium nitrate was used as a matrix modifier Zeeman background correction was used.

82

83 ETV-FAAS Pb in blood sample

84 Impaction GFAAS

85


Download ppt "원자흡수분광분석법 (원리및 응용)."

Similar presentations


Ads by Google