Presentation is loading. Please wait.

Presentation is loading. Please wait.

Progress on Bi-doped fibers Dong-Yo Jheng 2012/06/07.

Similar presentations


Presentation on theme: "Progress on Bi-doped fibers Dong-Yo Jheng 2012/06/07."— Presentation transcript:

1 Progress on Bi-doped fibers Dong-Yo Jheng 2012/06/07

2 First Paper of IR Emission in Bi-doped Glasses 2 97.5 SiO 2 - 2.2 Al 2 O 3 - 0.3 Bi 2 O 3 Ref [1]

3 Progress of Bismuth-doped Glass Fibers YearProgressGroupRef. 2001IR emission in Bi-doped silica glassOsaka Univ.[1] 2003Optical gain in Bi-doped silicaOsaka Univ.[2] 2005Bi-doped silica fiberSumitomo Elec.[3] Bi-doped silica fiberRAS[4] Bi-doped fiber laserRAS[5] 2007BDFL @ 1150 ~ 1215 nmRAS[6] Mode-locked BDFLRAS[7] 2008BDFL @ 1300 ~ 1470 nmRAS[8] 2009BDFL @ 1470 ~ 1550 nmRAS[9] 2011Bi-doped fiber amplifier @ 1430 bandRAS[10] 3 RAS: Russian academy of sciences

4 Bismuth Element 4 Element categoryPost-transition metal Atomic weight208.98040 Electron configuration[Xe] 4f 14 5d 10 6s 2 6p 3 Density9.78 g·cm −3 Melting point271.5 °C

5 Active Center for IR Emission  The nature of Bi-related IR-emitting centers is still unclear.  Bismuth products in glass synthesis: -Polyvalent ions: Bi 5+, Bi 3+, Bi 2+, Bi + -Clusters: Bi 2, Bi 2 -, Bi 3 -Colloids: (Bi) n  IR emission has been attributed to: -Bi 5+ - Fujimoto and Nakatsuka, 2001 -Bi + - X. Meng et al., 2005 -BiO - J. Ren et al., 2006 -Bi 2, Bi 2 -, Bi 2 2- - Khonthon et al., 2007; Sokolov et al., 2008 -Point defects in glass - Sharonov et al., 2008; Lakshminarayana et al., 2009 5 Ref [11]

6 Glass Compositions in Literatures 6 Ref [11]

7 Luminescence Intensity of Different Glasses 7 SiO 2 P 2 O 5 -SiO 2 GeO 2 Al 2 O 3 -SiO 2 Ref [12]

8 Emission Peak of Different Glasses 8 Ref [12]

9 Bismuth-doped Fibers  Fabricated with MCVD technique  Index guiding achieved by either method -Increase core index by dopants -Clad with F-doped silica  Loss level varies with compositions 9 Ref [12]

10 Diode-pumped BDFA at 1430 band  Material: GSB (Bismuth-doped germanosilicate)  L: 125 meters  34-dB net gain at 1427 nm under 180-mW pump  24-dB net gain with diode pumping 10 1310-nm diode pump 1320-nm Raman fiber laser pump P pump = 65 mW Ref [10]

11 BDFL at 1389 nm ~ 1538 nm 11 Non-PM fiber λ s = 1460 nm η s ~ 60% PM fiber λ s = 1460 η s = 41% PER>15dB Material: GSB L = 95 m λ p = 1340 nm Ref [13]

12 Conclusion  Bi-doped fiber -Laser emission demonstrated in the range of 1150~1550 nm with different core compositions and pump wavelengths. -Efficient laser and optical amplification demonstrated around 1430 nm for GSB fiber pump at 1310 nm.  Challenges -Complicated nature of active centers, unclear emission mechanism 12

13 References 1Y. Fujimoto, and M. Nakatsuka, "Infrared luminescence from bismuth-doped silica glass," Jpn. J. Appl. Phys. 40, 279 (2001). 2 Y. Fujimoto, and M. Nakatsuka, "Optical amplification in bismuth-doped silica glass," Appl. Phys. Lett. 82, 3325 (2003). 3T. Haruna, M. Kakui, T. Taru, S. Ishikawa, and M. Onishi, "Silica-Based Bismuth-Doped Fiber for Ultra Broad Band Light Source and Optical Amplification around at 1.1 μm," in Optical Amplifiers and Their Applications, Technical Digest (CD), (Optical Society of America, 2005), paper MC3. 4V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres," in European Conference on Optical Communications(Institution of Electrical Engineers, Glasgow, Scotland, 2005), pp. 949-950. 5E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, "CW bismuth fibre laser," Quantum Electron. 35, 1083-1084 (2005). 6E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, "High-power cw bismuth-fiber lasers," J. Opt. Soc. Am. B 24, 1749-1755 (2007). 7E. M. Dianov, A. A. Krylov, V. V. Dvoyrin, V. M. Mashinsky, P. G. Kryukov, O. G. Okhotnikov, and M. Guina, "Mode-locked Bi-doped fiber laser," J. Opt. Soc. Am. B 24, 1807-1808 (2007). 13

14 References (cont’d) 14 8I. A. Bufetov, S. V. Firstov, V. F. Khopin, O. I. Medvedkov, A. N. Guryanov, and E. M. Dianov, "Bi- doped fiber lasers and amplifiers for a spectral region of 1300–1470 nm," Opt. Lett. 33, 2227- 2229 (2008). 9E. M. Dianov, S. V. Firstov, V. F. Khopin, O. I. Medvedkov, A. N. Gur'yanov, and I. A. Bufetov, "Bi- doped fibre lasers operating in the range 1470–1550 nm," Quantum Electron. 39, 299 (2009). 10M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and E. M. Dianov, "Laser diode pumped bismuth-doped optical fiber amplifier for 1430 nm band," Opt. Lett. 36, 2408-2410 (2011). 11 I. A. Bufetov, and E. M. Dianov, "Bi ‐ doped fiber lasers," Laser Phys. Lett. 6, 487-504 (2009). 12E. M. Dianov, "Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers," Light Sci. Appl. 1, e12 (2012). 13A. Shubin, I. Bufetov, M. Melkumov, S. Firstov, O. Medvedkov, V. Khopin, A. Guryanov, and E. Dianov, "Bismuth-doped silica-based fiber lasers operating between 1389 and 1538 nm with output power of up to 22W,“ Opt. Lett. (to be published).


Download ppt "Progress on Bi-doped fibers Dong-Yo Jheng 2012/06/07."

Similar presentations


Ads by Google