Download presentation
Presentation is loading. Please wait.
Published byAlice Goodman Modified over 8 years ago
1
1 Algorithms Searching and Sorting Algorithm Efficiency
2
2 Efficiency A computer program should be totally correct, but it should also execute as quickly as possible (time-efficiency) use memory wisely (storage-efficiency) How do we compare programs (or algorithms in general) with respect to execution time? various computers run at different speeds due to different processors compilers optimize code before execution the same algorithm can be written differently depending on the programming language used
3
3 Example: Linear Search Input: List A of n unique data values, indexed from 0 to n-1. (The data values are not in any specific order.) The desired data value (target) we’re searching for. Output: The index of the location of the target in the list or -1 if the target is not found.
4
4 Example: Linear Search Algorithm: 1. Set index = 0. 2. While index < n and A[index] ≠ target, do the following: a. Add 1 to index 3. If index ≤ n-1, output index; Otherwise, output -1.
5
5 Example: Linear Search Algorithm: 1. Set index = 0. 2. While index < n and A[index] ≠ target, do the following: a. Add 1 to index 3. If index ≤ n-1, output index; Otherwise, output -1. index 0 index index + 1 index < n and A[index] ≠ target index ≤ n-1 index yes no yesno
6
6 Example: Linear Search Algorithm: 1. Set index = 0. 2. While index < n and A[index] ≠ target, do the following: a. Add 1 to index 3. If index ≤ n-1, output index; Otherwise, output -1. index 0 index index + 1 index >= n or A[index] = target index ≤ n-1 index no yes no DeMorgan’s Law: not (A and B) = (not A) or (not B)
7
7 Some questions What is the maximum number of data values we need to examine as a function of n? (i.e. worst case) What is the minimum number of data values we need to examine as a function of n? (i.e. best case) How much storage do we need to hold all of the information for use in this algorithm as a function of n?
8
8 Linear Search We measure time efficiency by counting the number of operations performed by the algorithm. But what is an operation? 1. Set index = 0. 2. While index ≤ n-1 and A[index] ≠ target, do the following: a. Add 1 to index 3. If index ≤ n-1, output index; Otherwise, output -1.
9
9 Counting Operations We typically count operations that are a function of the amount of data (n) that we have to process. Abstraction: We don't count individual operators (+, -,...). We count more general operations: assignments (← or "Set... equal to..."), or comparisons (,, =, ≠) For linear search, we might count comparisons. How many comparisons does linear search require in the worst case?n+2
10
10 Example: Binary Search Input: List A of n unique data values. NOTE: The data values must be sorted in increasing order. The desired data value (target) we’re searching for. Output: The index of the location of the target in the array or -1 if the target is not found.
11
11 Example: Binary Search Algorithm: 1. Set i = 0 and j = n-1. 2. Repeat: a. mid = (i + j) / 2 (ignore any remainder). b. If (target A[mid]), set i = mid+1. until i > j or A[mid] = target. 3. If i <= j, output mid. Otherwise, output -1.
12
12 Example: Binary Search Algorithm: 1. Set i = 0 and j = n-1. 2. Repeat: a. mid = (i + j) / 2 (ignore any remainder). b. If (target A[mid]), set i = mid+1. until i > j or A[mid] = target. 3. If i ≤ j, output mid. Otherwise, output -1. i 0, j n-1 mid (i + j) div 2 i > j or A[mid] = target i ≤ j mid yesno target < A[mid] j mid-1 i mid+1 no yes no target > A[mid] yes no
13
13 Counting Operations Again For binary search, consider the worst-case scenario (target is not in list) How many times can we split the list before the list becomes empty? n=15: 15 7 3 1 0(4 splits) In general, we can split the list in half approximately log 2 n + 1 times before it becomes empty. Recall the log function: log a b = c is equivalent to a c = b Examples: log 2 128 = 7log 2 n = 5 implies n = 32
14
14 Order of Complexity For very large n, we express the number of operations as the order of complexity. Order of complexity for worst-case behavior is often expressed using Big-O notation: Number of operationsOrder of Complexity nO(n) n/2 + 6O(n) 2n + 9O(n) Usually doesn't matter what the constants are... we are only concerned about the highest power of n.
15
15 O(n) ("Linear") n (amount of data) Number of Operations n n/2 + 6 2n + 9
16
16 O(n) n (amount of data) Number of Operations n 102030 10 20 30 10
17
17 Order of Complexity Number of operationsOrder of Complexity n 2 O(n 2 ) 2n 2 + 7O(n 2 ) n 2 /2 + 5n + 2O(n 2 ) Usually doesn't matter what the constants are... we are only concerned about the highest power of n.
18
18 O(n 2 ) ("Quadratic") n (amount of data) Number of Operations n 2 /2 + 5n + 2 2n 2 + 7 n2n2
19
19 O(n 2 ) n (amount of data) Number of Operations 102030 100 400 900 300 500 n2n2
20
20 Order of Complexity Number of operationsOrder of Complexity log 2 nO(log n) log 10 nO(log n) 2(log 2 n) + 5O(log n) The logarithm base is not written in big O notation since all that matters is that the function is logarithmic.
21
21 O(log n) ("Logarithmic") n (amount of data) Number of Operations log 2 n log 10 n 2(log 2 n) + 5
22
22 O(log n) n (amount of data) Number of Operations 163264 4 5 6 1 log 2 n 1
23
23 O(n log n) n (amount of data) Number of Operations 163264 160 384 96 224 n log 2 n = O(n log n) (not drawn to scale)
24
24 O(1) ("Constant") n (amount of data) Number of Operations 102040 15 15 = O(1)
25
25 O(2 n ) n (amount of data) Number of Operations 51015 32 1024 32768 992 31744 2 n = O(2 n ) (definitely not drawn to scale)
26
26 Comparing Big O Functions n (amount of data) Number of Operations O(2 n ) O(1) O(n log n) O(log n) O(n 2 ) O(n)
27
27 Searches Linear Search Count comparisons as operations. Worst Case: O(N) Binary Search Count comparisons as operations. Worst Case: O(log N) Which algorithm is better? In general, for large values of N: log N < N so binary search is better for large N. BUT, binary search requires a sorted list.
28
28 Selection Sort Find the smallest data value in the list from index 0 to index n-1 and swap it into position 0 of the list. Find the smallest data value in the list from index 1 to index n-1 and swap it into position 1 of the list. Find the smallest data value in the list from index 2 to index n-1 and swap it into position 2 of the list. …etc…
29
29 Selection Sort What is the worst-case order of complexity of selection sort on n data values? Count the comparisons as operations. First pass through:n-1 comparisons Second pass through:n-2 comparisons... Last (n-1 st ) pass through:1 comparison Order of complexity: (n-1)+(n-2)+...+1 = n(n-1)/2 = (n 2 -n)/2 = O(n 2 ) We call selection sort a "quadratic sort".
30
30 MergeSort Split the list into 2 halves.* If the size of the half-list is not 1, Sort each half using merge sort. (recursively) Set up a new list. Merge step: Move the smallest of each half-list into the new list. Repeat this step until one of the half-lists is empty. Then copy the remaining data in the non-empty half- list into the new list. *If the list has an odd number of elements, one list will have one extra element.
31
31 MergeSort 8427499132536317 8427499132536317 8427499132536317 8427499132536317
32
32 MergeSort 8427499132536317 27844991 27498491 32531763 17325363 1727324953638491
33
33 Merge Sort What is the order of complexity of merge sort? Let C(n) = total number of operations performed for merge sort on n data values. Operations include comparisons in the merge process. C(1) = 0 Maximum number of comparisons to merge 2 lists on size n/2 into one list of size n: n-1 comparisons. C(n) = C(n/2) + C(n/2) + n-1 = 2C(n/2) + n – 1 This is a recurrence relation (it’s recursive!). Solution: C(n) = n log 2 n - n + 1 = O(n log n).
34
34 Order of Complexity Examples: O(log N) + O(N) = O(N) O(N log N) + O(N) = O(N log N) O(N log N) + O(N 2 ) = O(N 2 ) O(2 N ) + O(N 2 ) = O(2 N ) O(A) O(B) Algorithm Overall order of complexity of algorithm is max (O(A), O(B)).
35
35 Order of Complexity Examples: O(log N) * O(N) = O(N log N) O(N log N) * O(N) = O(N 2 log N) O(N) * O(1) = O(N) O(A) O(B) Algorithm Overall order of complexity of algorithm is O(A * B). Example: - Nested loops O(A) does not include complexity of part B of algorithm
36
36 Searches Revisited What if you wanted to use binary search on data that is not sorted? Sort first:O(n log n) using Merge Sort Then use binary search:O(log n) Total runtime complexity: O(n log n) + O(log n) = O(n log n) Now, how does this compare to linear search?
37
37 Comparing Algorithms Assume an algorithm processes n data values. If each operation takes 1 s to execute, how many s will it take to run the algorithm on 100 data values if the algorithm has the following number of computations? Number of ComputationsExecution Time n100 s n log 2 n665 s n 2 10,000 s n 3 1,000,000 s = 1 sec 2 n > 10 30 s n!> 10 160 s
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.