Presentation is loading. Please wait.

Presentation is loading. Please wait.

Network Layer4-1 Mid-session test [Tim’s slide] r Your thoughts? r You should have received feedback email about rank r To be done: m Checking marking.

Similar presentations


Presentation on theme: "Network Layer4-1 Mid-session test [Tim’s slide] r Your thoughts? r You should have received feedback email about rank r To be done: m Checking marking."— Presentation transcript:

1 Network Layer4-1 Mid-session test [Tim’s slide] r Your thoughts? r You should have received feedback email about rank r To be done: m Checking marking (e.g. of alternate fill-in-the- blanks answers) m Decide extent of scaling m Feedback m Review by randomly selected students

2 Network Layer4-2 Lectures (1/2) [Tim’s slide] r Main (?) problems: m Speaking too fast Rate of speech in words per minute calculated from 8 x 60sec-sections of both: –Lectures: average 196 w/min –Radio National broadcasts: average 176 w/min i.e. aim to reduce rate by 10% (+/- radio vs lecture differences) m Slides contain too much information

3 Network Layer4-3 Lectures (2/2) [Tim’s slide] r Trial solution (weeks 8 & 9) Use pre-prepared slides from Kurose and Ross http://wps.aw.com/aw_kurose_network_3 Lecturer should have more time to think about what will be said, and concentrate on delivery Slides are available in advance of lectures Information density should be “just right”  Slight mismatch between text books  Risks of presenting other people’s material Please: give feedback tell people who aren’t here what you think transition from MAC to network layer provides a good synchronisation point to rejoin the course

4 Network Layer4-4 Context (1/2) [Tim’s slide] Kurose and Ross 1. Computer Networks and the Internet. 2. Application Layer. HTTP, FTP, email, DNS Socket programming, Content Distribution 3. Transport Layer. Multiplexing and Demultiplexing. Principles of Reliable Data Transfer. UDP and TCP. TCP Congestion Control. 4. Networking Layer & Routing. Routing Principles, Hierarchical Routing. The Internet Protocol, Routing and the Internet. IPv6, Multicast Routing, Mobility and the Network Layer. 5. Link Layer. LAN Addresses and ARP. 6. Wireless & Mobility. 7. Multimedia. Tanenbaum 1 Introduction 2 The physical layer 3 The data link layer 4 The medium access sublayer 5 The network layer Routing algorithms Congestion control algorithms Internetworking The network layer in the internet 6 The transport layer The transport service Elements of transport protocols A simple transport protocol The internet transport protocols: udp The internet transport protocols: tcp 7 The application layer DNS, email, HTTP multimedia

5 Network Layer4-5 Context (2/2) [Tim’s slide] r Have MAC addresses r At interface between MAC and network layers, translate between MAC and network layer (IP) addresses (ARP) r What are IP addresses? r Network Address Translation r DHCP?!!!

6 Network Layer4-6 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:  If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!)  If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2004 J.F Kurose and K.W. Ross, All Rights Reserved

7 Network Layer4-7 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or physical or Ethernet) address: m used to get datagram from one interface to another physically-connected interface (same network) m 48 bit MAC address (for most LANs) burned in the adapter ROM

8 Network Layer4-8 LAN Addresses and ARP Each adapter on LAN has unique LAN address Broadcast address = FF-FF-FF-FF-FF-FF = adapter 1A-2F-BB-76-09-AD 58-23-D7-FA-20-B0 0C-C4-11-6F-E3-98 71-65-F7-2B-08-53 LAN (wired or wireless)

9 Network Layer4-9 LAN Address (more) r MAC address allocation administered by IEEE r manufacturer buys portion of MAC address space (to assure uniqueness) r Analogy: (a) MAC address: like Social Security Number (b) IP address: like postal address  MAC flat address ➜ portability m can move LAN card from one LAN to another r IP hierarchical address NOT portable m depends on IP subnet to which node is attached

10 Network Layer4-10 ARP: Address Resolution Protocol r Each IP node (Host, Router) on LAN has ARP table r ARP Table: IP/MAC address mappings for some LAN nodes m TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min) Question: how to determine MAC address of B knowing B’s IP address? 1A-2F-BB-76-09-AD 58-23-D7-FA-20-B0 0C-C4-11-6F-E3-98 71-65-F7-2B-08-53 LAN 237.196.7.23 237.196.7.78 237.196.7.14 237.196.7.88

11 Network Layer4-11 ARP protocol: Same LAN (network) r A wants to send datagram to B, and B’s MAC address not in A’s ARP table. r A broadcasts ARP query packet, containing B's IP address m Dest MAC address = FF-FF-FF-FF-FF-FF m all machines on LAN receive ARP query r B receives ARP packet, replies to A with its (B's) MAC address m frame sent to A’s MAC address (unicast) r A caches (saves) IP-to- MAC address pair in its ARP table until information becomes old (times out) m soft state: information that times out (goes away) unless refreshed r ARP is “plug-and-play”: m nodes create their ARP tables without intervention from net administrator

12 Network Layer4-12 Routing to another LAN walkthrough: send datagram from A to B via R assume A know’s B IP address r Two ARP tables in router R, one for each IP network (LAN) r In routing table at source Host, find router 111.111.111.110 r In ARP table at source, find MAC address E6-E9-00-17-BB-4B, etc A R B

13 Network Layer4-13 r A creates datagram with source A, destination B r A uses ARP to get R’s MAC address for 111.111.111.110 r A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram r A’s adapter sends frame r R’s adapter receives frame r R removes IP datagram from Ethernet frame, sees its destined to B r R uses ARP to get B’s MAC address r R creates frame containing A-to-B IP datagram sends to B A R B

14 Network Layer4-14

15 Network Layer4-15 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:  If you use these slides (e.g., in a class) in substantially unaltered form, that you mention their source (after all, we’d like people to use our book!)  If you post any slides in substantially unaltered form on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2004 J.F Kurose and K.W. Ross, All Rights Reserved

16 Network Layer4-16 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with scale m how a router works m advanced topics: IPv6, mobility r instantiation and implementation in the Internet

17 Network Layer4-17 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Link state m Distance Vector m Hierarchical routing r 4.6 Routing in the Internet m RIP m OSPF m BGP r 4.7 Broadcast and multicast routing

18 Network Layer4-18 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers segments to transport layer r network layer protocols in every host, router r Router examines header fields in all IP datagrams passing through it network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical application transport network data link physical

19 Network Layer4-19 Key Network-Layer Functions r forwarding: move packets from router’s input to appropriate router output r routing: determine route taken by packets from source to dest. m Routing algorithms analogy: r routing: process of planning trip from source to dest r forwarding: process of getting through single interchange

20 Network Layer4-20 1 2 3 0111 value in arriving packet’s header routing algorithm local forwarding table header value output link 0100 0101 0111 1001 32213221 Interplay between routing and forwarding

21 Network Layer4-21

22 Network Layer4-22 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection” r packets forwarded using destination host address m packets between same source-dest pair may take different paths application transport network data link physical application transport network data link physical 1. Send data 2. Receive data

23 Network Layer4-23 Forwarding table Destination Address Range Link Interface 11001000 00010111 00010000 00000000 through 0 11001000 00010111 00010111 11111111 11001000 00010111 00011000 00000000 through 1 11001000 00010111 00011000 11111111 11001000 00010111 00011001 00000000 through 2 11001000 00010111 00011111 11111111 otherwise 3 4 billion possible entries

24 Network Layer4-24 Longest prefix matching Prefix Match Link Interface 11001000 00010111 00010 0 11001000 00010111 00011000 1 11001000 00010111 00011 2 otherwise 3 DA: 11001000 00010111 00011000 10101010 Examples DA: 11001000 00010111 00010110 10100001 Which interface?

25 Network Layer4-25 Datagram or VC network: why? Internet r data exchange among computers m “elastic” service, no strict timing req. r “smart” end systems (computers) m can adapt, perform control, error recovery m simple inside network, complexity at “edge” r many link types m different characteristics m uniform service difficult ATM r evolved from telephony r human conversation: m strict timing, reliability requirements m need for guaranteed service r “dumb” end systems m telephones m complexity inside network

26 Network Layer4-26

27 Network Layer4-27 IP Addressing: introduction r IP address: 32-bit identifier for host, router interface r interface: connection between host/router and physical link m router’s typically have multiple interfaces m host may have multiple interfaces m IP addresses associated with each interface 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 223.1.1.1 = 11011111 00000001 00000001 00000001 223 111

28 Network Layer4-28 Subnets r IP address: m subnet part (high order bits) m host part (low order bits) r What’s a subnet ? m device interfaces with same subnet part of IP address m can physically reach each other without intervening router 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 network consisting of 3 subnets LAN

29 Network Layer4-29 Subnets 223.1.1.0/24 223.1.2.0/24 223.1.3.0/24 Recipe r To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet. Subnet mask: /24

30 Network Layer4-30 Subnets How many? 223.1.1.1 223.1.1.3 223.1.1.4 223.1.2.2 223.1.2.1 223.1.2.6 223.1.3.2 223.1.3.1 223.1.3.27 223.1.1.2 223.1.7.0 223.1.7.1 223.1.8.0223.1.8.1 223.1.9.1 223.1.9.2

31 Network Layer4-31 IP addressing: CIDR CIDR: Classless InterDomain Routing m subnet portion of address of arbitrary length m address format: a.b.c.d/x, where x is # bits in subnet portion of address 11001000 00010111 00010000 00000000 subnet part host part 200.23.16.0/23

32 Network Layer4-32 IP addresses: how to get one? Q: How does host get IP address? r hard-coded by system admin in a file m Wintel: control-panel->network->configuration- >tcp/ip->properties m UNIX: /etc/rc.config r DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server m “plug-and-play” (more in next chapter)

33 Network Layer4-33 IP addresses: how to get one? Q: How does network get subnet part of IP addr? A: gets allocated portion of its provider ISP’s address space ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20 Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23 Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23 Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23... ….. …. …. Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

34 Network Layer4-34 Hierarchical addressing: route aggregation “Send me anything with addresses beginning 200.23.16.0/20” 200.23.16.0/23200.23.18.0/23200.23.30.0/23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning 199.31.0.0/16” 200.23.20.0/23 Organization 2...... Hierarchical addressing allows efficient advertisement of routing information:

35 Network Layer4-35 Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization 1 “Send me anything with addresses beginning 200.23.16.0/20” 200.23.16.0/23200.23.18.0/23200.23.30.0/23 Fly-By-Night-ISP Organization 0 Organization 7 Internet Organization 1 ISPs-R-Us “Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23” 200.23.20.0/23 Organization 2......

36 Network Layer4-36 IP addressing: the last word... Q: How does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers m allocates addresses m manages DNS m assigns domain names, resolves disputes

37 Network Layer4-37

38 Network Layer4-38 NAT: Network Address Translation 10.0.0.1 10.0.0.2 10.0.0.3 10.0.0.4 138.76.29.7 local network (e.g., home network) 10.0.0/24 rest of Internet Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual) All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

39 Network Layer4-39 NAT: Network Address Translation r Motivation: local network uses just one IP address as far as outside word is concerned: m no need to be allocated range of addresses from ISP: - just one IP address is used for all devices m can change addresses of devices in local network without notifying outside world m can change ISP without changing addresses of devices in local network m devices inside local net not explicitly addressable, visible by outside world (a security plus).

40 Network Layer4-40 NAT: Network Address Translation Implementation: NAT router must: m outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)... remote clients/servers will respond using (NAT IP address, new port #) as destination addr. m remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair m incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

41 Network Layer4-41 NAT: Network Address Translation 10.0.0.1 10.0.0.2 10.0.0.3 S: 10.0.0.1, 3345 D: 128.119.40.186, 80 1 10.0.0.4 138.76.29.7 1: host 10.0.0.1 sends datagram to 128.119.40, 80 NAT translation table WAN side addr LAN side addr 138.76.29.7, 5001 10.0.0.1, 3345 …… S: 128.119.40.186, 80 D: 10.0.0.1, 3345 4 S: 138.76.29.7, 5001 D: 128.119.40.186, 80 2 2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table S: 128.119.40.186, 80 D: 138.76.29.7, 5001 3 3: Reply arrives dest. address: 138.76.29.7, 5001 4: NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345

42 Network Layer4-42 NAT: Network Address Translation r 16-bit port-number field: m 60,000 simultaneous connections with a single LAN-side address! r NAT is controversial: m routers should only process up to layer 3 m violates end-to-end argument NAT possibility must be taken into account by app designers, eg, P2P applications m address shortage should instead be solved by IPv6

43 Network Layer4-43 r The following slides are from the 2 nd edition of Kurose and Ross – omitted from the 3 rd edition?!!!

44 Network Layer4-44 DHCP: Dynamic Host Configuration Protocol Goal: allow host to dynamically obtain its IP address from network server when it joins network Can renew its lease on address in use Allows reuse of addresses (only hold address while connected and “on”) Support for mobile users who want to join network (more shortly) DHCP overview: m host broadcasts “DHCP discover” msg m DHCP server responds with “DHCP offer” msg m host requests IP addr.: “DHCP request” msg m DHCP server sends addr.: “DHCP ack” msg DHCP is an extension of BOOTP You may see it called BOOTP by sniffers *

45 Network Layer4-45 DHCP client-server scenario 223.1.1.1 223.1.1.2 223.1.1.3 223.1.1.4 223.1.2.9 223.1.2.2 223.1.2.1 223.1.3.2 223.1.3.1 223.1.3.27 A B E DHCP server arriving DHCP client needs address in this network

46 Network Layer4-46 src: 0.0.0.0, 68 dest:: 255.255.255.255, 67 yiaddr: 223.1.2.4 transaction ID: 655 Lifetime: 3600 secs DHCP client-server scenario DHCP server: 223.1.2.5 arriving client time DHCP discover src : 0.0.0.0, 68 dest.: 255.255.255.255,67 yiaddr: 0.0.0.0 transaction ID: 654 DHCP offer src: 223.1.2.5, 67 dest: 255.255.255.255, 68 yiaddr: 223.1.2.4 transaction ID: 654 Lifetime: 3600 secs DHCP request DHCP ACK src: 223.1.2.5, 67 dest: 255.255.255.255, 68 yiaddr: 223.1.2.4 transaction ID: 655 Lifetime: 3600 secs 67 = IP protocol number for DHCP servers 68 = IP protocol number for DHCP clients yiaddr = your internet address


Download ppt "Network Layer4-1 Mid-session test [Tim’s slide] r Your thoughts? r You should have received feedback email about rank r To be done: m Checking marking."

Similar presentations


Ads by Google