Presentation is loading. Please wait.

Presentation is loading. Please wait.

Assistances Circulatoires: actualités

Similar presentations


Presentation on theme: "Assistances Circulatoires: actualités"— Presentation transcript:

1 Assistances Circulatoires: actualités
Pr Boumzebra

2 . Mechanical Device which is used to replace or reproduce the pump function of the left and/or right ventricle heart transplant: treatment of choice for treating heart failure patients with end-stage Disproportion between the number of available grafts and the number of transplant candidates => Development of artificial hearts, partial and total encouraging results of the artificial heart + miniaturization of these devices => consider their usage in final settlement for non-eligible heart failure patients for transplantation Introduction

3 CVD deaths vs. cancer deaths by age (US)

4 Événements historiques
1953: Gibbon répare une CIA en utilisant une machine coeur-poumon Heart mate II approuvé comme thérapie de destination 1984: DeVries implante le coeur artificiel Jarvik-7 1963: DeBakey implante la première pompe d’assistance ventriculaire pour un patient en étét de choc cardiogéniqque 1994: FDA approuve le LVAD comme pont pour la transplantation 1968: Shumway réalise la 1ère transplantation cardiaque aux USA Les techniques d’assistance circulatoire se sont développées dans la seconde partie du Xxeme siècle parallèlement à l’essor de la chirurgie cardiaque et en particulier de la greffe cardiaque 1969: Cooley implant une pompe d’assistance circulatoire comme pont pour une transplantation cardiaque 2004: Essai REMATCH 1967: Barnard performe la 1ère transplantation cardiauqe

5 Indications For mechanical circulatory support
Failure to wean off CPB (post-cardiotomy) ESHD awaiting Tx failing optimal medical management Acute viral myocarditis/ post-partum cardiomyopathy Acute Massive MI with shock Cardiac arrest in hospital Destination therapy for non-Tx Others: ……

6 Hemodynamic Indications for support
SBP<80 mm Hg MAP<65 mm Hg CI<2.0 L/min/m2 PCWP>20 mm Hg SVR>2100 dynes-sec/cm Consider mechanical circulatory support in patient that cannot sustain adequate systemic oxygen delivery to maintain normal end organ function despite maximal medical therapy Circulation 2005; 112:

7 Criteria for patient selection
Class IV HF Failing hemodynamics Persistent pulmonary oedema Neurologic impairment or renal failure due to low perfusion Fluids and electrolytes imbalance related to low cardiac output Severe arrhythmias despite medical therapy

8 Exclusion Criterias For Mechanical Circulatory Support
Multi-system or irreversible organ failure Uncontrolled infection/ sepsis Recent pulmonary infarction Significant bleeding diathesis Recent/ significant neurologic insult No reasonable long-term options Hx of non-compliance/ inadeq. Social support Advanced age Malignancy

9 INTERMACS: Patient Selection
Patient Profile/ Status: INTERMACS Levels 1. Critical cardiogenic shock Progressive decline Stable but inotrope dependent Recurrent advanced HF Exertion intolerant Exertion limited Advanced NYHA III INTERMACS is a national registry for patients who are receiving mechanical circulatory support device therapy to treat advanced heart failure. This registry was devised as a joint effort of the National Heart, Lung and Blood Institute (NHLBI), the Centers for Medicare and Medicaid Services (CMS), the Food and Drug Administration (FDA), clinicians, scientists and industry representatives in conjunction with the University of Alabama at Birmingham (UAB) and United Network for Organ Sharing (UNOS). 102 sites currently enrolled since creation in 2003

10 Device Selection Duration of support Size of patient
Severity of LV dysfunction Need for bi-ventricular support Cause of ventricular failure/likehood of recovery Surgeon experience Bleeding issues

11 Short term Device options
ECMO IABP Tandem Heart Bridge to recovery Bridge to decision Centrimag Blue: general shade Centrifugal: light blue Axial: purple Pneumatic: green AbioMed 5000 Impella Circulation 112 (3): 438

12 Percutaneous ventricular assistance devices

13 Intraaortic Balloon Pump (IABP)
Counterpulsation is synchronized to the EKG or arterial waveforms Increase coronary perfusion Decrease left ventricular stroke work and myocardial oxygen requirements Indications for its use include Failure to wean from cardiopulmonary bypass Cardiogenic shock after MI Heart failure Refractory ventricular arrhythmias with ongoing ischemia In diastole, the balloon inflates to augment coronary perfusion At the beginning of systole, the balloon deflates and blood is ejected from the left ventricle to increase cardiac output by as much as 40 percent

14

15

16 Impella Axial flow pumps Acute hemodynamic support
Miniaturized impellar pump in catheter Helical catheter tip placed across aortic valve and left ventricle Percutaneous or direct placement Flow 4.5L/min Bridge to recovery

17

18 E C M O Matériel Elles sont constituées d’un rotor mobile, électrique, qui propulse le sang soit par effet vortex, soit par l’intermédiaire d’ailettes. Comme toute pompe non occlusive, leur fonctionnement dépend directement de la précharge et de la post-charge. Elles peuvent être associées à un oxygénateur permettant ainsi de réaliser un cœur-poumon artificiel (ECMO ou ECLS [extra corporeal life support]) [2, 3]. Les canules d’entrée et de sortie de la pompe sont implantées soit en intrathoracique par sternotomie, soit au niveau des vaisseaux fémoraux, en utilisant la méthode Seldinger, après un abord a minima de la face antérieure des vaisseaux (figures 1et 2). Dans ce cas, l’implantation peut être réalisée au lit du patient sous anesthésie locale. En fonction de la morphologie du patient, le calibre des canules est de 18 à 20 F pour l’artère et de 25 à 30 F pour la veine. En cas d’implantation périphérique, et afin d’éviter toute ischémie de membre inférieur, un cathéter de perfusion de l’artère fémorale superficielle est branché en dérivation sur le circuit artériel. À côté de ces dispositifs de circulation extracorporelle, il faut signaler la mise à disposition très récente de pompes miniaturisées, montées sur un cathéter, pouvant être insérées par voie percutanée fémorale rétrograde jusque dans la cavité ventriculaire gauche (figure 3) et générant un débit d’assistance de 2,5 à 5 l/min (Impella™). Ces dispositifs, encore en phase d’évaluation clinique, ont un intérêt potentiel pour la prise en charge des chocs cardiogéniques, même si les résultats préliminaires incitent à la prudence.

19 Bridge to bridge: ECMO Immediately stabilize circulation
Improve end organ perfusion Clinical indicators of poor outcome after ECMO: consider VAD implantation carefully Elevated blood lactate levels ECMO) is used for the resuscitation of patients in cardiogenic shock or after cardiopulmonary resuscitation (CPR) [1ñ 6]. Several investigators have demonstrated that patients who present with both postcardiotomy or intrinsic car- diogenic shock can be supported successfully with ECMO [1ñ 6]. Extracorporeal membrane oxygenation of- fers several advantages: (1) the percutaneous insertion of the cannulas into the femoral vessels is simple and can be performed even during CPR; (2) it provides both cardiac and pulmonary support for hypoxic patients; (3) it avoids a sternotomy incision; (4) it applies to patients in cardiac arrest; (5) it provides time to assess potential transplant candidates; and (6) it is less costly than other forms of mechanical circulatory supportWith the increasingly successful application of long- term implantable ventricular assist devices (VAD), the limitations of ECMO could be overcome by bridging patients to a long-term implantable VAD after initial ECMO resuscitation (bridge to bridge) [1, 2, 7]. In some patients suffering from myocarditis or postcardiotomy cardiogenic shock, weaning from VAD is possible (bridge to recovery). In all other patients, heart transplantation remains the only viable option (bridge to transplant). The objective of this study is to evaluate the outcome of the bridge to bridge concept and to identify risk factors indicating adverse outcome. Pagani et al. Ann Thorac Surg 2000; 70:

20 Centrifugal pumps Acute hemodynamic support Continuous flow
Extracorporeal LV, RV or biventricular support Wide availability Ease of use Relatively low cost Limited duration of support Bridge to recovery Bridge to decision Wiebalck and associates [12] reported similar fidings with their use of the He- mopump, as well as a 58% survival and hospital dis- charge rate. Dreyfus [13] reported an overall survival rate of 40% with the Hemopump, and recommended its immediate use in the operating room as a fist step to treat postcardiotomy shock before a medical or intraaor- tic balloon pump failure. Our experience with the use of centrifugal pumps as a bridge to recovery for patients with postcardiotomy fail- ure has been favorable. Many patients in our series showed clinical improvement with circulatory support, were weaned successfully and discharged from the hos- pital, and have had satisfactory long-term survival. Cen- trifugal pumps are available, easy to use, relatively inex- pens i ve, and of t en have out comes equi val ent t o pneumatic devices. Our experience justifis their contin- ued use as a bridge to recovery for PCCS patients, despite the availability and the increasing use of more expensive devices.6.. Hoy et al. Ann Thorac Surg 2000; 70:

21 Tandem hearts Acute hemodynamic support Centrifugal pump
Percutaneous placement LV support via transseptal cannula Used in high risk cardiac catheterization procedures Risk of vascular injuries due to cannula size

22 Abiomed 5000 Extracorporeal Pneumatic pulsatile pumps
Uni- or biventricular support Bridge to transplant Easy to insert and operate so used in community hospitals Flows 6L/min The ABIOMED BVS 5000™ is used worldwide for temporary left, right, or biventricular (both ventricles) support in patients with potentially reversible heart failure. The BVS 5000 underwent preclinical studies at the Texas Heart Institute (THI) from 1986 to 1988 and was introduced for use in patients at THI in It was the first heart assist device approved by the US Food and Drug Administration for the support of post-cardiotomy patients (those who have developed heart failure as a result of heart surgery). Since that time, hundreds of patients have been sustained by the BVS 5000. In addition to post-cardiotomy support, the BVS 5000 may also be used in the following cases: . Donor heart dysfunction or donor heart failure after heart transplantation. . Right-sided heart failure after placement of a left ventricular assist device. . Acute heart attack. . Acute heart disorders, such as viral myocarditis. . Trauma to the heart. . Disease of the heart muscle (cardiomyopathy). . In patients whose hearts have not recovered after temporary support, the BVS 5000 may  be used as a bridge to another device or as a bridge to heart transplantation. This air-driven blood pump is placed outside the body (extracorporeally). A unique feature of this system is its dualchamber design, which is similar to the natural heart. This design provides support for either the left or right ventricle, or both. The Pump The pump houses two polyurethane chambers: an atrial chamber that fills with blood through gravitational force and a ventricular chamber  that pumps blood by air-driven power. The atrial chamber is vented outside the patient. The ventricular chamber is connected to the power console by a 0.25-inch pneumatic (air) line. Two trileaflet valves separate the atrial and ventricular chambers. The pump can produce blood flow of up to 5 liters per minute. Cannulas of various designs (for blood drainage and return) are available to accommodate individual patient anatomy. The Console The BVS 5000 console can support one or two blood pumps. It is fully automatic and compensates for changes both in preload and afterload. The left and right  sides are triggered independently of each other. A backup battery provides 1 hour of support, and an alarm will sound when only 10 minutes of power remain. A foot  pump can also serve as a backup power source. By using the console to limit blood flow, patients can be slowly weaned Circulation. 2005;112:

23 Abiomed 5000 Minimal bedside monitoring
Supports large children and adults Maximum use….1 week Patients are not mobile High cost

24 Short term Device options

25 Long term Device options
Heartmate II Heartmate XVE Bridge to transplant Thoratec Blue: general shade Centrifugal: light blue Teal: Axial: purple Pneumatic: green Jarvik 2000 CardioWest TAH Circulation 112 (3): 438

26

27 Thoratec Pneumatic pump LVAD, RVAD or biventricular support Durable
Can be used in smaller patients Flows 7L/min Bridge to recovery Bridge to transplant Circulation. 2005;112:

28

29 Heartmate XVE Pneumatic or vented electric plates
Textured internal surfaces Only left-sided support Flows 10L/min Bridge to transplant First device to be approved for destination therapy Need BSA>1.5 Limited durability: half life 18 months Infection risk with percutaneous drive line Circulation. 2005;112:

30 Heartmate II Axial flow LV support Flows 10L/min Long term durability
Bridge to transplant Approved January 2010 for destination therapy Over 4000 devices implanted to date

31 CardioWest The TAH is used to bridge the time to a heart transplant.
SynCardia CardioWest TAH

32 Total Artificial Heart
CardioWest ( C-70 ) Pneumatic total artificial heart C.O. is approximately 7.0 L/M BSA>1.7 Need CPB for implant Native heart not excised Need Anti-coagulation Patient in-house but mobile

33 Total Artificial Heart
Abiomed’s total artificial heart Still in clinical trials First patient lasted several months on device If successful, will save hundreds of thousands of live because there will be no waiting like the transplant list

34

35 Transplantation versus assistance circulatoire de longue durée : quelle stratégie pour les patients présentant une insuffisance cardiaque terminale décompensée ?

36

37 Specificity in children
Child’s size > miniaturisation du dispositif The pathophysiology of HF in children is different than in adult patient short duration: ECMO Centrifugal pump Long duration : Berlin heart : pneumatic assistance Pediatric Jarvik 2000 : turbine MEDOS

38 Device complications Early Late Bleeding Right sided heart failure
Progressive multiorgan system failure Late Infection Nosocomial Device related Thromboembolism Failure of device

39 Next generation of VADs
Miniaturized Improved durability Bearing-less technology Blood compatible surfaces Nonthrombogenic Transcutaneous Drive line Power sources Future for ESHD lies in cell therapy: reverse myocardium remodeling or regrow new myocardium

40 Conclusion Domain still area for research Save lives but $$$$ Should be used efficiently in our institution

41


Download ppt "Assistances Circulatoires: actualités"

Similar presentations


Ads by Google