Presentation is loading. Please wait.

Presentation is loading. Please wait.

June 19, 2012 (Toho Univ. a, Univ. Toyama b ) ○Yuta Motoki a, Yukari Tsunoda a, Hiroyuki Ozeki a, Kaori Kobayashi b Hiroyuki Ozeki a, Kaori Kobayashi b.

Similar presentations


Presentation on theme: "June 19, 2012 (Toho Univ. a, Univ. Toyama b ) ○Yuta Motoki a, Yukari Tsunoda a, Hiroyuki Ozeki a, Kaori Kobayashi b Hiroyuki Ozeki a, Kaori Kobayashi b."— Presentation transcript:

1 June 19, 2012 (Toho Univ. a, Univ. Toyama b ) ○Yuta Motoki a, Yukari Tsunoda a, Hiroyuki Ozeki a, Kaori Kobayashi b Hiroyuki Ozeki a, Kaori Kobayashi b

2 Glycine (NH 2 CH 2 COOH) Alanine, Glutamine, etc… Amino acid ProteinLife Freq.(GHz)Speace Detect ? Brown et al. (1979) 23 - 83 Sgr B2, Ori A, etc. × Hollis et al. (1980) 80 - 100 Sgr B2 × Combes et al. (1996) 101 - 223 Sgr B2, Orion × Ceccarelli et al. (2000) 101, 216 IRAS 16293 - 2422 × Kuan et al. ( 2003 ) 79 - 251 Sgr B2, Ori KL, W51 e1/e2 ? Etc.

3  Kuan et al. reported detection of glycine of total 27 lines towards Sgr B2, Orion KL, W51 e1/e2. towards Sgr B2, Orion KL, W51 e1/e2.  After that, Snyder et al. (2005) contradicted it ・ ・・  New spectra data of glycine.  Unpublished astronomical observational data.  Other observational data. They concluded that part of these glycine lines are due to the vibrational-excited state of are due to the vibrational-excited state of ethyl cyanide(CH 3 CH 2 CN) or vinyl cyanide(CH 2 CHCN).

4  Now, there are no absolute reports to detect interstellar glycine. to detect interstellar glycine.  How is the glycine generated ??  What is the precursor of glycine in interstellar cloud ??  Do the precursor exist in interstellar cloud ??

5  Strecker Reaction (Strecker (1850))  One of the famous reaction that produce amino acid in the laboratory frame. NH 3 + H 2 CO → CH 2 NH + H 2 O CH 2 NH + HCN → NH 2 CH 2 CN NH 2 CH 2 CN + H 2 O → NH 2 CH 2 CONH 2 NH 2 CH 2 CONH 2 + H 2 O → NH 2 CH 2 COOH + NH 3 ammonia formaldehyde methylenimine hydrogen cyanide aminoacetonitrile (AAN) Glycine ( Ugliengo et al. 2011 )

6 AANNC 1.4760 Å 1.4760 Å CC’ 1.4611 Å 1.4611 Å C’N’ 1.1594 Å 1.1594 Å CH 1.0940 Å 1.0940 Å NH 1.0138 Å 1.0138 Å NCC’114.54° HCH102.4° HNC109.6° HNH107.3° CC’N’180.0° Pickett (1973) Hydrogen Carbon Nitrogen N N’ C C’

7 MacDonald & Tyler 1972  Measured AAN spectra in microwave region. a-type: 3 lines b-type: 2 lines a-type: 3 lines b-type: 2 linesPickett1973  Measured AAN and its deuterated isotopologues (NHD-, ND 2 -) spectra in microwave region. (NHD-, ND 2 -) spectra in microwave region.  Decided electric dipole moment. μ a =2.577(7)D, μ b =0.5754(10)D μ a =2.577(7)D, μ b =0.5754(10)D Brown et al. 1977  Determined hyper fine coupling constant of Nitrogen nuclei. of Nitrogen nuclei. χ aa = -2.77(0.04), χ bb = 1.20(0.09) : amino nitrogen (MHz) χ aa = -3.48(0.03), χ bb = 1.50(0.06) : nitrile nitrogen (MHz) Bogey et al. 1990  Measured AAN spectra in millimeter wave region. J’ ≤ 40 a-type: 110 lines, b-type: 5 lines. J’ ≤ 40 a-type: 110 lines, b-type: 5 lines.  Determined AAN’s molecule constant.

8 Parameter (MHz)Bogey et al. A30246.755(18) B 4761.06169(44) C 4310.75076(41) D J ×10 3 3.06545(48) D JK -0.055293(10) DKDK 1.0483(20) d 1 ×10 3 -0.67160(16) d 2 ×10 3 -0.03096(13) H J ×10 9 9.47(18) H JK ×10 6 -3.067(14) H KJ ×10 6 6.85(13) H K ×10 3 0.034479(90) h 2 ×10 9 -0.962(93) h 3 ×10 9 2.623(59) L JK ×10 9 -3.58(22) L KJ ×10 12 8.45(98) L K ×10 6 17.08(94) S K ×10 9 52.5(33)

9

10 Parameter (MHz)Belloche et al. A30246.4561(71) B 4761.06102(84) C 4310.75123(76) D J ×10 3 3.06853(68) D JK -0.0552986(69) DKDK 0.67662(99) d 1 ×10 3 -0.67160(40) d 2 ×10 3 -0.028893(106) H J ×10 9 9.593(276) H JK ×10 6 -0.1201(72) H KJ ×10 6 -2.6861(268) H K ×10 3 a 0.030 a h 1 ×10 9 2.989(225) a : fixed  These constants are compiled by CDMS (The Cologne Database for Molecular Spectroscopy) catalog. by CDMS (The Cologne Database for Molecular Spectroscopy) catalog. Previously(Bogey et al.) D K = 1.0483(20)

11 CDMS  Belloche et al. (2008) succeeded to detect AAN’s millimeter wave spectra towards Sgr B2(N)!! AAN’s millimeter wave spectra towards Sgr B2(N)!!  Detected region 80~260GHz  Detected line a-type transition of 51 lines GHz

12  According to the CDMS catalog, AAN predictions have had large errors AAN predictions have had large errors in sub-millimeter region. in sub-millimeter region.  b-type transitions have not been measured well.  H K,h 1 ~h 3, and higher constants have not determined well.  In this study, we measured pure rotational spectra from millimeter to sub-millimeter region. from millimeter to sub-millimeter region.  Improve AAN molecule constant to measure mostly b-type and higher K a ’ transition. to measure mostly b-type and higher K a ’ transition.  Find other miss-assignments.

13  Spectrometer Frequency-modulated sub-millimeter wave spectrometer Frequency-modulated sub-millimeter wave spectrometer  Measured region  Measured region 122 ~ 188 GHz, 372 ~ 537 GHz, 621 ~ 661GHz 122 ~ 188 GHz, 372 ~ 537 GHz, 621 ~ 661GHz  The sample gas was about 8×10 -3 Pa. Sample Gas (AAN) Glass Cell Transmitter InSb Detector

14 J’≤74, K a ’ ≤15 a-type transitions of 107 lines were measured.  J’≤74, K a ’ ≤15 a-type transitions of 107 lines were measured.

15  b-type transitions of K a ’ -K a ” =2-1 were not found near the predicted frequencies in 122~188 GHz.  Except all of K a ’ ≥ 2, b-type transitions.  Only K a ’ -K a ” =1-0, 0-1 transitions include our fit.  After that, we measured ・・・ 1.K a ’ -K a ” =1-0, 0-1 transitions in 122~188GHz. 2.K a ’ ≥ 2 transitions in 122~188GHz. 3.and Extend higher frequency region.

16 A; 26 10,16 -26 9,17, 26 10,17 -26 9,18 B; 32 10,22 -32 9,23, 32 10,23 -26 9,24 C; 27 10,17 -27 9,18, 27 10,18 -27 9,19 D; 31 10,21 -31 9,22, 31 10,22 -31 9,23 E; 28 10,18 -28 9,19, 28 10,19 -28 9,20 F; 30 10,20 -30 9,21, 30 10,21 -30 9,22, 29 10,19 -26 9,20, 26 10,20 -26 9,21 29 10,19 -26 9,20, 26 10,20 -26 9,21 J’ Ka’Kc’ -J’’ Ka’’Kc’’ Head of b-type, Q-branch

17 J’≤57, K a ’ ≤13 b-type transitions of 176 lines were measured.  J’≤57, K a ’ ≤13 b-type transitions of 176 lines were measured.

18 Parameter (MHz)Present Study Belloche et al.Bogey et al. A30246.48715(90)30246.4561(71)30246.755(18) B 4761.061966(146) 4761.06102(84) 4761.06169(44) C 4310.748772(150) 4310.75123(76) 4310.75076(41) D J ×10 3 3.066693(136) 3.06853(68) 3.06545(48) D JK ×10 2 -5.529480(85) -5.52986(69) -5.5293(10) DKDK 0.7140098(97) 0.67662(99) 1.0483(20) d 1 ×10 3 -0.6731843(229) -0.67160(40) -0.67160(16) d 2 ×10 3 -0.0299408(66) -0.028893(106) -0.03096(13) H J ×10 9 9.451(39) 9.593(276) 9.47(18) H JK ×10 6 -0.123358(172) -0.1201(72) -3.067(14) H KJ ×10 6 -2.68354(312) -2.6861(268) 6.85(13) H K ×10 3 0.052091(36) 0.030 0.034479(90) h 1 ×10 9 3.7152(43) 2.989(225) - h 2 ×10 9 0.45735(202) - -0.962(93) h 3 ×10 9 0.05303(98) - 2.623(59) L J ×10 12 -0.0217(34) - - L JK ×10 9 - - -3.58(22) L KJ ×10 12 - - 8.45(98) L K ×10 6 - - 17.08(94) S K ×10 9 - - 52.5(33)

19 Present Study Belloche et al. Bogey et al. 0.9020.51 RMS39.7kHz27.2kHz

20  Pure rotational spectra of AAN from millimeter to sub- millimeter wave region were measured.  J’≤74, K a ’ ≤15 a-type transition of 107 lines and J’≤57, K a ’ ≤13 b-type transition of 176 lines were measured, and analyzed these lines and previous measured lines with Watson’s S-reduced Hamiltonian.  Owing to measurements of high K a of b-type transition, higher order centrifugal constants were determined well.  These data allow reliable predictions to do astronomical observation about 1THz.

21  We thank NAOJ (National Astronomical Observatory of Japan) for lending us a synthesizer. of Japan) for lending us a synthesizer.

22

23 Glass Cell Oscilloscope Filter PSD Modulator PC Frequency Synthesizer Rb clock GPS ×n Pirani gauge Diffusion pump Detector Amp Gas Multiplier

24 23

25 24

26 25


Download ppt "June 19, 2012 (Toho Univ. a, Univ. Toyama b ) ○Yuta Motoki a, Yukari Tsunoda a, Hiroyuki Ozeki a, Kaori Kobayashi b Hiroyuki Ozeki a, Kaori Kobayashi b."

Similar presentations


Ads by Google