Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stabilizing Climate by Biosphere indicated from past temperature record M. Yamauchi IRF, Kiruna Climate is determined by subtle balance of large energy.

Similar presentations


Presentation on theme: "Stabilizing Climate by Biosphere indicated from past temperature record M. Yamauchi IRF, Kiruna Climate is determined by subtle balance of large energy."— Presentation transcript:

1 Stabilizing Climate by Biosphere indicated from past temperature record M. Yamauchi IRF, Kiruna Climate is determined by subtle balance of large energy influx and large energy outflux. Considering the amount of total influx, the Terrestrial climate shows a surprising stability.

2 Feedback chain Solar input CO2 Temperature drive positive feedback H2O plant plankton drive drive (via cosmic ray?) feedback?negative feedback drive

3 CO2 (red) and Temp (blue) from Ice Air Historical CO2 record from the Law Dome DE08, DE08-2, and DSS ice cores [data: Etheridge et al., 1998] http://cdiac.esd.ornl.gov/trends/co2/lawdome.html Histrical Isotop Temperature from Vostok Ice Core: Jouzel et al., 1987, 1993, 1996; Petit et al., 1999 [data: Petit et al., 2000] http://cdiac.esd.ornl.gov/trends/temp/vostok/jouz_tem.htm Surprising stability of T against CO2 change

4 T (by D/H ratio) from 425 kyr ago - now T Good agreement with Milankovitch cycle (Kawamura et al., 2007)

5 Rejection of outliers in O 2 /N 2 data and orbital tuning (Kawamura et al.) (A) Summer solstice insolation at 77°S (B) O 2 /N 2 Red color : age is determined by O 2 /N 2 Kawamura et al., 2007 (Nature, 23 August 2007 issue) http://www.nature.com/nature/journal/v448/n7156/abs/nature06015.html Insolation is a key factor in determining the climate

6 Cross spectral analysis (Kawamura et al.) Red: -O2/N2 (red) Blue: (A) summer solstice insolation at 77 °S; (B)  O ice Kawamura et al., 2007 (Nature, 23 August 2007 issue) http://www.nature.com/nature/journal/v448/n7156/abs/nature06015.html

7 T (by D/H ratio) from 425 kyr ago - now T ∆T = T(t) - T(t-dt) Good agreement with Milankovitch cycle (Kawamura et al., 2007) My interest is "stopping" effect of the variation

8 Histrical Isotop Temperature from Vostok Ice Core: Jouzel et al., 1987, 1993, 1996; Petit et al., 1999 [data: Petit et al., 2000] Change of T between data points (Vostok) T(t)-T(t-dt) T(t+dt)-T(t) http://cdiac.esd.ornl.gov/trends/temp/vostok/jouz_tem.htm

9 Change of T between data points (cont.) -423 kyr ~ -3 kyr -3000 yr ~ -150 yr T(t+dt)-T(t) T(t)-T(t-dt) Only 2 point positive 3 point or more positive Sudden increase of temperature cannot continue unless external forcing (insolation, human, solar activity) increases

10 Raw data (Vostok's T) m t(yr)D in iceT(t)T(t)-T(t-dt) 742291-4311.16-1.04 752331-443.9-0.982.14 762374-446.7-1.440.46 772418-442.4-0.73-0.71 832670-438.1-0.02-0.15 842713-445.2-1.191.17 852760-449.9-1.970.78 862805-441.7-0.61-1.36 2008135-422.62.06-1.76 2018178-431.40.591.47 2028226-440.1-0.871.46 2038276-439.5-0.78-0.09 77251159-456.1-3.77-1.14 77351230-459.5-4.340.57 77451306-465.8-5.381.04 77551384-467.1-5.60.22 77651465-470.8-6.210.61 77751549-473.1-6.60.39 77851633-472.1-6.43-0.17 104374484-463.6-4.74-0.88 104474565-471.4-6.031.29 104574651-476.8-6.920.89 104674738-470.5-5.87-1.05 109078277-458.5-3.82-2.24 109178353-469.9-5.711.89 109278437-476.4-6.791.08 109378522-472.4-6.12-0.67 m t(yr)D in iceT(t)T(t)-T(t-dt) 111280020-457.5-3.66-1.29 111380093-464.8-4.871.21 111480173-473.9-6.381.51 111580257-472.3-6.11-0.27 114282213-450.7-2.54-0.47 114382280-457.4-3.651.11 114482352-464.6-4.851.2 114582427-463-4.59-0.26 125389973-463.2-4.69-0.37 125490048-468.8-5.610.92 125590128-475.3-6.681.07 125690209-470.9-5.94-0.74 1846129324-416.32.78-0.26 1847129374-419.62.20.58 1848129428-428.70.671.53 1849129486-434.5-0.310.98 1850129545-429.10.56-0.87 2997292732-455.8-3.46-0.06 2998292976-457.1-3.670.21 2999293232-463.7-4.761.09 3000293502-466.5-5.220.46 3001293779-467.3-5.340.12 3002294060-468.9-5.60.26 3003294348-471.7-6.060.46 3004294637-468.7-5.56-0.5

11 What do they indicate? If shortwave influx (to the polar region) is the key factor for climate change, then regulator for the influx is also important. Possible regulators (Norris and Wild 2006): (1) Cloud distribution change (reflect more shortwave in daytime and shift longwave toward shorter wavelength in nighttime) (2) Aerosol change (reflect more shortwave) 1. Largest external forcing (for climate change) = insolation in polar region (Kawamura et al., 2007). Very small change in solar radiation can cause a large effect. 2. Negative feedback (e.g., by biosphere) over few degree climate change has a short timescale, i.e., increased CO2/Temperature will decrease soon unless external forcing to increase CO2/Temperature keep increasing.

12 (1) Cloud change Seasonal mean removed Diurnal mean removed Norris, 2005, JGR

13 (2) Aerosol effect (> cloud effect) Norris, 2006, JGR Total influx of short wave at ground Expected influx after cloud reflection Estimated loss by non-cloud reflector: aerosol? 1971~19861987~2002

14 Feedback chain Solar input CO2 Temperature drive positive feedback H2O plant plankton drive drive (via cosmic ray?) feedback?negative feedback drive Human

15 Temperature: 1970-2006 JapanworldN.hemisphere.S.hemisphere Data from Japanese Meteorological Agency http://www.data.kishou.go.jp/climate/cpdinfo/temp/index.html decrease shortwave influx increase shortwave influx

16 Japan (1,4,8) January April August

17 T (by D/H ratio) : -425 kyr ~ -350 kyr T ∆T = T(t) - T(t-dt)

18 T (by D/H ratio) : -350 kyr ~ -275 kyr T ∆T = T(t) - T(t-dt)

19 T (by D/H ratio) : -275 kyr ~ -200 kyr T ∆T = T(t) - T(t-dt)

20 T (by D/H ratio) : -200 kyr ~ -125 kyr T ∆T = T(t) - T(t-dt)

21 T (by D/H ratio) : -50 kyr ~ -0 kyr T ∆T = T(t) - T(t-dt)

22 T (by D/H ratio) : -125 kyr ~ -50 kyr T ∆T = T(t) - T(t-dt)


Download ppt "Stabilizing Climate by Biosphere indicated from past temperature record M. Yamauchi IRF, Kiruna Climate is determined by subtle balance of large energy."

Similar presentations


Ads by Google