Presentation is loading. Please wait.

Presentation is loading. Please wait.

Penn ESE370 Fall2012 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2012 Memory Core: Part.

Similar presentations


Presentation on theme: "Penn ESE370 Fall2012 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2012 Memory Core: Part."— Presentation transcript:

1 Penn ESE370 Fall2012 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2012 Memory Core: Part 2

2 Today DRAM Leakage Multiport SRAM Tristate Drivers (time permitting) Penn ESE370 Fall2012 -- DeHon 2

3 Memory Bank Penn ESE370 Fall2012 -- DeHon 3

4 DRAM Penn ESE370 Fall2012 -- DeHon 4

5 1T 1C DRAM Simplest case – Memory is capacitor –Feature of DRAM process is ability to make large capacitor compactly Penn ESE370 Fall2012 -- DeHon 5

6 1T DRAM What happens when read this cell? Penn ESE370 Fall2012 -- DeHon 6 Cbit << Cbl

7 1T DRAM On read, charge sharing –V BL = (C bit /C BL )V store Small swing on bit line –Must be able to detect –Means want large C bit limit bits/bitline so V BL large enough Cell always depleted on read –Must be rewritten Penn ESE370 Fall2012 -- DeHon 7

8 Different? What else is different about this? Penn ESE370 Fall2012 -- DeHon 8

9 Dynamic Node Not driven Depend on charge staying on the node for a period time Sets an upper bound on how long can expect data to stay Penn ESE370 Fall2012 -- DeHon 9

10 10 Dynamic RAM Takes sharing idea one step further Share refresh/restoration logic as well Only left with access transistor and capacitor

11 3T DRAM Penn ESE370 Fall2012 -- DeHon 11

12 3T DRAM How does this work? –Write? –Read? Penn ESE370 Fall2012 -- DeHon 12

13 3T DRAM Correct operation not sensitive to sizing Does not deplete cell on read No charge sharing with stored state All NMOS (single well) Prechage ReadData Must use V dd +V TN on W to write full voltage Penn ESE370 Fall2012 -- DeHon 13

14 Penn ESE370 Fall2012 -- DeHon 14 Some Numbers (memory) Register as stand-alone element (14T)  4K 2 Static RAM cell (6T)  1K 2 –SRAM Memory (single ported) Dynamic RAM cell (DRAM process)  100 2 Dynamic RAM cell (SRAM process)  300 2

15 Energy Penn ESE370 Fall2012 -- DeHon 15

16 Single Port Memory What fraction is involved in a read/write? What are most cells doing on a cycle? Reads are slow –Cycles long  lots of time to leak Penn ESE370 Fall2012 -- DeHon 16

17 ITRS 2009 45nm Penn ESE370 Fall2012 -- DeHon 17 High Performance Low Power I sd,leak 100nA/  m50pA/  m I sd,sat 1200  A/  m560  A/  m C g,total 1fF/  m0.91fF/  m V th 285mV585mV C 0 = 0.045  m × C g,total

18 High Power Process V=1V d=1000  =0.5 W access =W buf =2 Full swing for simplicity C sc = 0 –(just for simplicity, typically <C load ) BL: C load =1000C 0 ≈ 45 fF = 45×10 -15 F W N = 2  I leak = 9×10 -9 A P= (45×10 -15 ) freq + 1000×9×10 -9 W Penn ESE370 Fall2012 -- DeHon 18

19 Relative Power P= (45×10 -15 ) freq + 1000×9×10 -9 W P= (4.5×10 -14 ) freq + 9×10 -6 W Crossover freq<200MHz How partial swing on bit line change?  Reduce dynamic energy  Increase percentage in leakage energy  Reduce crossover frequency Penn ESE370 Fall2012 -- DeHon 19

20 Consequence Leakage energy can dominate in large memories Care about low operating (or stand-by) power Use process or transistors with high V th –Reduce leakage at expense of speed Penn ESE370 Fall2012 -- DeHon 20

21 Multiport RAM Skip to admin Penn ESE370 Fall2012 -- DeHon 21

22 Mulitport Perform multiple operations simultaneously –E.g. Processor register file R3  R1+R2 Requires two reads and one write Penn ESE370 Fall2012 -- DeHon 22

23 Simple Idea Add access transistors to 5T Penn ESE370 Fall2012 -- DeHon 23

24 Watch? What do we need to be careful about? Penn ESE370 Fall2012 -- DeHon 24

25 Adding Write Port Penn ESE370 Fall2012 -- DeHon 25

26 Write Port What options does this raise? Penn ESE370 Fall2012 -- DeHon 26

27 Opportunity Asymmetric cell size Separate sizing constraints –Weak drive into write port (W restore ) –Strong drive into read port (W buf ) Penn ESE370 Fall2012 -- DeHon 27

28 Isolate BL form Mem Penn ESE370 Fall2012 -- DeHon 28 Larger, but more robust Essential for large # of read ports Precharge ReadData High

29 Multiple Write Ports Penn ESE370 Fall2012 -- DeHon 29

30 Bus Drivers Penn ESE370 Fall2012 -- DeHon 30

31 Memory Bank Penn ESE370 Fall2012 -- DeHon 31

32 Tristate Driver Penn ESE370 Fall2012 -- DeHon 32

33 Tri-State Drivers Penn ESE370 Fall2012 -- DeHon 33

34 Memory Bank Penn ESE370 Fall2012 -- DeHon 34

35 Idea Memory can be compact Rich design space Demands careful sizing Penn ESE370 Fall2012 -- DeHon 35

36 Admin HW5 and Proj1 graded and on blackboard –Definitely look at what we expected on project report HW6 Due tomorrow Project 2 out –Milestone due Tuesday Penn ESE370 Fall2012 -- DeHon 36


Download ppt "Penn ESE370 Fall2012 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 14, 2012 Memory Core: Part."

Similar presentations


Ads by Google