Download presentation
Presentation is loading. Please wait.
Published byAvis Howard Modified over 8 years ago
1
Tracking and Probing Single, Diffusing Molecules in Droplets Mark Arsenault, Peker Milas, Ben Gamari, Richard Buckman, Lori Goldner Biophysics Group MiniSymposium 19 May 2010
2
Droplet-Based Assays ~1 m diameter aqueous droplet fluorophore Target molecule Oil Phase
3
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
4
Single-Molecule Assays (surface)
5
Single-Molecule 3-Bead Assay (surface) Quadrant Photodiode ~ 5 pN “pretension” on ~1 m diameter beads
6
Single-Molecule 3-Bead Assay (surface) Quadrant Photodiode
7
Single-Molecule 3-Bead Assay (surface) Quadrant Photodiode ~ 5 pN motor force
8
Droplet-Based Assays Tightly focused IR laser
9
Droplet-Based Assays Tightly focused IR laser Tightly focused visible laser
10
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
11
Benefit of Miniaturization Faster Cheaper Better 50 years! ENIAC on a 7.44 by 5.29 sq. mm chip Historic Computer Images, ftp.arl.army.mil/ftp/historic-computers ENIAC-on-a-Chip, www.ee.upenn.edu/~jan/eniacproj.html Miniaturization
12
A. W. Chow AIChE, 2002 1 inch
13
IR Force Oil Aqueous A Aqueous B IR Beam Detection Region Microfluidics
14
Flow-focusing device producing both a) 20 mm diameter and b) ~1 mm diameter aqueous droplets. a)b)
15
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
16
APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume Back-Focal-Plane Tracking Fluorescent Excitation
17
Back-Focal-Plane Tracking APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume Fluorescent Emission
18
Solution FRET Large Volume Ensemble Measurement
19
Solution FRET Large Volume Ensemble Measurement Small Volume Ensemble Measurement
20
Solution FRET Large Volume Ensemble Measurement Small Volume Ensemble Measurement Small Volume, Single- Molecule Measurement
21
Back-Focal-Plane Tracking APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume IR Trapping
22
Back-Focal-Plane Tracking PID control of Mad City Labs piezoelectric nanostage. [We will move the stage (microfluidic device) so as to remain in the trap/confocal spot] APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume IR Tracking
23
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
24
Back-Focal-Plane Tracking x y 1 um bead APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume
25
Back-Focal-Plane Tracking y x VxVx APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume
26
Back-Focal-Plane Tracking x y z APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume
27
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
28
Surface-based FRET
29
Solution FRET
30
16-mer RNA duplex with Cy3 and Cy5 labeling + Trolox + Puglisi oxygen scavenging enzyme 5` 3` Cy3 G - C C - G U - A C - G A - U C - G U - A G - C U - A C - G A - U C - G U - A C - G G - C Cy5 3` 5`
31
Conclusions Solution FRET We are obtaining nice burst data from single, diffusing fluorescent RNA molecules Let’s do droplets! Droplet Tracking We need to calibrate much more quickly (i.e. 100 ms). Calibrating in oil will be that much easier, however, so once we make that jump, the oil should give us an added jump in performance.
32
Device Fabrication Silicon Spin negative photoresist: SU-8 Transparency mask Expose to UV light 100 um
33
Device Fabrication UV light exposed Develop – finished master! Pour PDMS
34
Device Fabrication Remove device 150 um thick Attach to glass + PDMS 100 um Punch plumbing
35
Tipstreaming Mechanism Microscale tipstreaming in a microfluidic flow focusing device, PHYSICS OF FLUIDS 18, 121512 2006
36
Capillary Number Relates viscous forces to capillary pressure Ca= C Ga/ where = oil viscosity G = elongation rate a = drop radius = surface tension Ca = C Q C a/ h Z (1/W or – 1/2W up ) h = channel depth V D ~ 1 cm/s V C ~ 5 cm/s Microscale tipstreaming in a microfluidic flow focusing device, PHYSICS OF FLUIDS 18, 121512 2006
37
Dimensionless Parameters Navier Stokes eqn. Reynold’s Number Weber Number Inertia is not important!
38
Droplet Regimes Geometry-controlled Thread-formation drippingjetting Microscale tipstreaming in a microfluidic flow focusing device, PHYSICS OF FLUIDS 18, 121512 2006
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.