Presentation is loading. Please wait.

Presentation is loading. Please wait.

15/12/2008from LHC to the UniverseP. Chang 1 CP Violation and Rare R Decays CP Violation and Rare R Decays Paoti Chang Paoti Chang National Taiwan University.

Similar presentations


Presentation on theme: "15/12/2008from LHC to the UniverseP. Chang 1 CP Violation and Rare R Decays CP Violation and Rare R Decays Paoti Chang Paoti Chang National Taiwan University."— Presentation transcript:

1 15/12/2008from LHC to the UniverseP. Chang 1 CP Violation and Rare R Decays CP Violation and Rare R Decays Paoti Chang Paoti Chang National Taiwan University From LHC to the Universe NTU, Taipei December 15, 2008

2 15/12/2008from LHC to the UniverseP. Chang 2 KM Mechanism CP violation is due to a complex phase in quark mixing matrix CP violation is due to a complex phase in quark mixing matrix 1()1() 2()2() 3()3() V td V* tb V cd V* cb V ud V* ub Unitarity Matrix V ud V* ub + V cd V* cb + V td V* tb = 0

3 15/12/2008from LHC to the UniverseP. Chang 3 Nobel Prize 2008

4 15/12/2008from LHC to the UniverseP. Chang 4 Time dependent CP Asymmetry Asymmetry in  t shape implies ICPV. Difference in area indicates DCPV

5 15/12/2008from LHC to the UniverseP. Chang 5 Measurement in Principle Fully reconstruct a CP eigenstate. Determine the flavor the tag side. From the distance of the two B decay vertices to measure the decay time difference.

6 15/12/2008from LHC to the UniverseP. Chang 6 Is there New physics? Is KM mechanism the source of CPV? Is KM mechanism the source of CPV? (Main reason why B factory was built?) (Main reason why B factory was built?) Is it the only source? New Physics? Is it the only source? New Physics? NP may appear in rare B decays. NP may appear in rare B decays. clean probe for NP.  Bs not covered clean probe for NP.  Bs not covered Current Universe   SM not enough Direct or Indirect CP violation, branching fraction …

7 15/12/2008from LHC to the UniverseP. Chang 7 The Duel of B Factories Mt. Tsukuba

8 15/12/2008from LHC to the UniverseP. Chang 8 Successful Operation peak L =1.71x10 34 peak L =1.21x10 34 B Factory is also a  charm factory. Bs physics can be studied when runs at  (5S)

9 15/12/2008from LHC to the UniverseP. Chang 9 Results Results

10 15/12/2008from LHC to the UniverseP. Chang 10 Measurement of  1 /  CP violation in the B system was already established.

11 15/12/2008from LHC to the UniverseP. Chang 11 From all Measurements B factories:  1 ~2 o,  2 ~10 o,  3 ~15 o -30 o

12 15/12/2008from LHC to the UniverseP. Chang 12 Time dependent CPV in b → s Penguin +  sin2   /sin2  golden mode d d s s s   S ~ 0 Stand Model New physics phase in the loop causes deviation May have tree pollution. Theoretical expectation: for penguin dominant modes  S>0 within 0.05 Clean signals for new physics  S = sin2  1 (sqq) – sin2  1 (ccs) S f = sin2  1 ; C f =  A d d s s s

13 15/12/2008from LHC to the UniverseP. Chang 13  S results before ICHEP 2008 PRL 99, 161802 (2007) Based on KKK Dalitz analysis PRL 98, 031802 (2007) 535 M  ' K  : sin2  1eff : +0.64± 0.10 ± 0.04 For most modes,  S(SM) is positive.

14 15/12/2008from LHC to the UniverseP. Chang 14 Decay Modes with Updated Results Class A:  ’ K 0,  K S  Same method as J/  K 0 Class A:  ’ K 0,  K S  Same method as J/  K 0 Class B: K 0   Class B: K 0   Class C:     K S, K + K  K S Class C:     K S, K + K  K S Class D:  K S    Class D:  K S    Class is characterized by the analysis complexity. No tracks on B decay vertex. Require tacks with SVD hits. Perform fit by constraining C. Model the Dalitz distributions. Many parameters: phase, S and C for each mode …. Low statistics. Need to know the CP content. Use results from  K    

15 15/12/2008from LHC to the UniverseP. Chang 15  1 measured with penguins

16 15/12/2008from LHC to the UniverseP. Chang 16 Time dependent Dalitz

17 15/12/2008from LHC to the UniverseP. Chang 17  1 /  with all penguin modes

18 15/12/2008from LHC to the UniverseP. Chang 18 Direct CP Violation in B → K  Decays Belle Results: Nature 452, 332 (2008) A cp (K    ) = {  Belle  BaBar    CDF  CLEO A cp (K    ) = {  BaBar  Belle  CLEO  @ 2.0  AVG  @  AVG  A K  =  cp (K   -  A cp (K    ) =  @ 5.3    New Update

19 15/12/2008from LHC to the UniverseP. Chang 19  A K  Puzzle T /T P TP CP EW Expectation from current theory T & P are dominant   A K  ~ 0 Enhancement of large C with large strong phase to T  strong inter. !? Yoshikawa 2003; Mishima & Yoshikawa 2004; Buras et. al. 2004, 2006; Baek & London 2007; Hou et. al. 2007; Feldmann, Jung & Mannel 2008 Enhancement of large P EW  New physics Chiang et. al. 2004 Li, Mishima & Sanda 2005

20 15/12/2008from LHC to the UniverseP. Chang 20 Model independent checks for NP M. Gronau, PLB 627, 82 (2005); D. Atwood & A. Soni, Phys. Rev. D 58, 036005(1998). B  → K    P dominants.  A cp (K    )~ 0 B  → K    A cp (K    )  A(K  ) Sum rule predicts A cp (K    ) =  0.151±0.043 A cp (K    )= 0.009±0.025 A =  ± 0.13 ± 0.03 World Average Sum rule A =  0.14 ± 0.13 ± 0.06 Important topic for Super B factory New HFAG AVG:  0.01 

21 15/12/2008from LHC to the UniverseP. Chang 21 First observation of direct CP violation in charged B decays Dalitz analysis on         Dalitz analysis on               383M BB, PRD78, 012004, 08 A CP (B ± →   K ± ) =  (+44±10±4 )% @3.7  55  A CP (B ± →   K ± ) =  (+41±10±3 )% @4.0  33 77 657M BB, BELLE-CONF-0827    f    K+K+     B+ all cos  >0 cos  0

22 15/12/2008from LHC to the UniverseP. Chang 22 B  →  ) x 10  B  →  ) x 10   B  →   B  →   In SM, decay rate related to decay constant and V ub Charged Higgs may contribute to BF.  B (B →  )= ( 0.78 )x10  (CKM fitter 2008 prediction)   Previous results: Belle hadronic tagBaBar hadronic & semileptonic tags 447 M BB  with 3.5  383 M BB  with   destructive W.S. Hou, PRD 48, 2342 (1993)

23 15/12/2008from LHC to the UniverseP. Chang 23 New Belle Result on B  →   New Belle Result on B  →       NEW with 3.8  657 M BB with D ( * ) l tag N sig = 154 (stat) (syst) exclude signals Larger parameter space  B (  →  ) = (1.65 )x10    Tag on D ( * ) l Search for  →e , ,  Check extra energy in ECAL Understand background from the control sample

24 15/12/2008from LHC to the UniverseP. Chang 24 New BaBar Result on B  →   New BaBar Result on B  →   Tag on D ( * ) l  look for  →e, , , 

25 15/12/2008from LHC to the UniverseP. Chang 25 Tension in the CKM fit BaBar ( B x10 4 ) Had. Tags1.79 Dl Tags 1.65 1.8±0.8±0.1   Belle ( B x10 4 )    1.8 ±0.4   My Avg. B = (1.73±0.35)x10  CKM fitter obtained B = (0.78 ) x10    deviation = 2.6  B = (1.2 ±0.4) x10 -4 using Note that interference is destructive in 2HDM (type II). B > B SM implies that H  contribution dominates

26 15/12/2008from LHC to the UniverseP. Chang 26 B (B →  ) vs sin2  1 /2  Using ratio, the relation is independent of f B and Vub Belle and BaBar will have new updates soon. Good topics for the future Super B factory 1  deviation

27 15/12/2008from LHC to the UniverseP. Chang 27 B→Xs B→Xs B→Xs B→Xs  Belle update with E  >1.7 GeV: arXiv:0804.1580 SM NNLO calculation: HFAG 2008: B ( B →X s  = (3.52 ±0.25)x10  E  > 1.6 GeV Misiak et al. B ( B →X s  ) | E  > 1.6 GeV = (2.98±0.26)x10  (3.47±0.49)x10  Anderson Gardi { SM (3.15±0.23)x10  New physics Becher Neubertv E  min

28 15/12/2008from LHC to the UniverseP. Chang 28 Charged Higgs Bound HFAG 2008  M H + > 300 GeV/c 2 @ 95% C.L. for all tan  The 95% lower bound of charged Higgs mass as a function of B (B → X s  ) and its error.

29 15/12/2008from LHC to the UniverseP. Chang 29 b → s l  l  b → s l  l  Loop dominant  Small BF ; good place for new physics! Loop dominant  Small BF ; good place for new physics! Contributions from three coefficients: Contributions from three coefficients: C 7 : EM penguin; C 9 (C 10 ): vector (axial vector) part of weak diagrams C 7 : EM penguin; C 9 (C 10 ): vector (axial vector) part of weak diagrams More observables sensitive to NP: More observables sensitive to NP: eff  FB lepton asymmetry, A FB  K* polarization, FL  CP asymmetry, A CP  Isospin asymmetry  e  ratio A FB (q 2 ): e  e       indication of Z 0 s l  l  b  s l  l   L eff =  C i O i, C i (short distance effect). SM expects real C i SM 

30 15/12/2008from LHC to the UniverseP. Chang 30 Obtain partial BF in 6 bins in q 2 ; extrapolate the total BF. Obtain partial BF in 6 bins in q 2 ; extrapolate the total BF. BF(B  K*ll)=(10.8±1.0±0.9) x10 -7 BF(B  K*ll)=(10.8±1.0±0.9) x10 -7 BF(B  Kll)=(4.8 ±0.3) x10 -7 BF(B  Kll)=(4.8 ±0.3) x10 -7 Good agreement with SM BF B  K*llB  Kll 657M, NEW BF(B  K*ll)= (11.1±1.9±0.7) x10 -7 BF(B  K*ll)= (11.1±1.9±0.7) x10 -7 BF(B  Kll)= (3.9±0.7±0.2) x10 -7 BF(B  Kll)= (3.9±0.7±0.2) x10 -7 FPCP 08 384M  0.5   Belle, ICHEP 08  BABAR, FPCP 08  Melikhov et. al (quark model, PLB 410, 1997)  Ali (PRD 66, 034002, 290, 2002) Veto events in the J/  and  ’ regions photon pole

31 15/12/2008from LHC to the UniverseP. Chang 31 Obtain partial BF in 6 bins in q 2 ; extrapolate the total BF. Obtain partial BF in 6 bins in q 2 ; extrapolate the total BF. BF(B  K*ll)=(10.8±1.0±0.9) x10 -7 BF(B  K*ll)=(10.8±1.0±0.9) x10 -7 BF(B  Kll)=(4.8 ±0.3) x10 -7 BF(B  Kll)=(4.8 ±0.3) x10 -7 Good agreement with SM BF B  K*llB  Kll 657M, NEW BF(B  K*ll)= (11.1±1.9±0.7) x10 -7 BF(B  K*ll)= (11.1±1.9±0.7) x10 -7 BF(B  Kll)= (3.9±0.7±0.2) x10 -7 BF(B  Kll)= (3.9±0.7±0.2) x10 -7 FPCP 08 384M  0.5   Belle, ICHEP 08  BABAR, FPCP 08  Melikhov et. al (quark model, PLB 410, 1997)  Ali (PRD 66, 034002, 290, 2002) Veto events in the J/  and  ’ regions  Belle, 08 ’ ICHEP  BABAR, 08 ’ FPCP  CDF, 06 ’ CKM Ali 02 ’ photon pole

32 15/12/2008from LHC to the UniverseP. Chang 32 Lepton Flavor & CP Asymmetries A CP In SM, R K ~ 1.33 and R K ~1.0. R K is sensitive to the size of photon pole. R K >1.0 in the two Higgs doublet model with large tanβ. (Y. Wang and D. Atwood, PRD 68, 094016, 2003)   R K =  B (B → K ( * ) ee) B (B → K ( * )  )

33 15/12/2008from LHC to the UniverseP. Chang 33 Unexpectedly Large Isospin Asymmetry? 

34 15/12/2008from LHC to the UniverseP. Chang 34 K* Helicity Distribution Obtain FL by a fit:

35 15/12/2008from LHC to the UniverseP. Chang 35 Anomalous A FB (q 2 ) in B → K ( * ) ll ? Obtain A FB by a fit: 657 M BB 384 M BB Data show positive A FB at low q 2, while the SM predicts negative A FB. At high q 2, data above the SM expectation. Efficiency corrected

36 15/12/2008from LHC to the UniverseP. Chang 36 Conclusion Results start to probe NP but limited by statistics:  →  A FB, isospin asymmetry B (B  Xs  ) strong constraint to NP N eed much more data to confirm the  S puzzle.  A explanation  if from new physics, what is it? LHCb:  Bs, A FB on K*ll, Bs,d  ll, … Super B factory: B →  K*  cp       Look for the approval of Super KEKB in 2009! 

37 15/12/2008from LHC to the UniverseP. Chang 37 Backup Slides

38 15/12/2008from LHC to the UniverseP. Chang 38 More on A FB C 7 =  C 7 ? If yes, B will change! The sign of C 7 is constrained by B (Xsll). C may be complex due to new physics. SM Gambino et. al, PRL94, 061803, 05 Hou et. Al, PRD77, 014016, 08 Points LHCb 2 fb  1 MC Dashed area: complex C Black line: SM Blue: 4th generation ŝ = q 2 /M 2 (l  l  )

39 15/12/2008from LHC to the UniverseP. Chang 39 Direct CP Violation on B → X s  BaBar measurement using sum of 16 exclusive modes arXiv: 0805.4796 383 M BB SM expectation by Kagan & Neubert, PRD58, 094012 (1998) A CP ~ (0.5±0.2)%  small CP asymmetry A CP =  ± 0.030 (stat.) ± 0.014 (syst.)

40 15/12/2008from LHC to the UniverseP. Chang 40 tCPV on Radiative Penguin No CPV seen before; this conference: No CPV seen before; this conference: K* region K0K0K0K0 K   KKKK 1.2<M(K  )<1.6 - - - - + B0B0 K*0K*0 LL B0B0 K*0K*0 RR M 12  R m s /m b suppressed  L m s /m b suppressed Interference suppressed in SM

41 15/12/2008from LHC to the UniverseP. Chang 41 TCPV on B   K    K L    evts K S    evts First Try NEW 556 ± 32 evts For S, use candidates with SVD hits For C, all signals

42 15/12/2008from LHC to the UniverseP. Chang 42 TCPV on B   K    K L    evts K S    evts First Try NEW 556 ± 32 evts For S, use candidates with SVD hits For C, all signals BaBar Belle S +0.55±0.20±0.03  0.67±0.31±0.08 C=  A  0.13±0.13±0.03  0.14±0.13±0.06

43 15/12/2008from LHC to the UniverseP. Chang 43 TCPV on  ' K ,  K S and  K S   NEW 467 M BB  S  C =  A  ' K   0.57±0.08±0.02  0.08±0.06±0.02  K S  0.55 ±0.02  0.52 ±0.03  K S        0.97  0.20±0.14±0.06  0.26  0.29  0.22  0.20  0.03  0.52 final dataset See Hirschauer’s talk for details. For  K   , polarizations, yields, Acp … are constrained with  K    KK

44 15/12/2008from LHC to the UniverseP. Chang 44 T-dependent Dalitz on     K  657 M BB NEW (K S     NR    K S    NR        NR K S K*     K*         Decay modes considered  f   K S  f   K S  f X  K   difference as systematic errors S

45 15/12/2008from LHC to the UniverseP. Chang 45 T-dependent Dalitz on K  K  K  657 M BB NEW Model uses  f   K S   K S  f X  K S   c   K S  K S  K   NR K   K  K   NR K S S

46 15/12/2008from LHC to the UniverseP. Chang 46 Future Prospects for A FB (q 2 ) SuperB 5ab  MC study of SuperB SuperB 50 ab  MC study of SuperB  b   EXP, SM MSSM C 7geff >0 ATLAS 30 fb  LHCb  fb 

47 15/12/2008from LHC to the UniverseP. Chang 47 Future Prospects for A FB (q 2 ) SuperB 5ab  MC study of SuperB SuperB 50 ab  MC study of SuperB  b   EXP, SM MSSM C 7geff >0 ATLAS 30 fb  LHCb  fb  CDF and D0, please contribute!


Download ppt "15/12/2008from LHC to the UniverseP. Chang 1 CP Violation and Rare R Decays CP Violation and Rare R Decays Paoti Chang Paoti Chang National Taiwan University."

Similar presentations


Ads by Google