Presentation is loading. Please wait.

Presentation is loading. Please wait.

Status of GEO600 Benno Willke for the GEO600 team ESF Exploratory Workshop Perugia, September 2005.

Similar presentations


Presentation on theme: "Status of GEO600 Benno Willke for the GEO600 team ESF Exploratory Workshop Perugia, September 2005."— Presentation transcript:

1 Status of GEO600 Benno Willke for the GEO600 team ESF Exploratory Workshop Perugia, September 2005

2 ESF 05 / GEO, B. Willke

3 container cluster 2005 Workshop Central Building Bathrooms Offices Control Room / Visitor Center

4 ESF 05 / GEO, B. Willke Tube / Trench

5 ESF 05 / GEO, B. Willke Clean Room / Control Room

6 ESF 05 / GEO, B. Willke Triple Pendulum Suspension

7 ESF 05 / GEO, B. Willke Thermal Noise / Monolithic Suspension Silicate (Hydroxy- Catalysis) Bonding Weld

8 ESF 05 / GEO, B. Willke reaction pendulum

9 ESF 05 / GEO, B. Willke 12W Laser modecleaner interferometer with „dual recycling“ detektor GEO 600 – optical layout

10 ESF 05 / GEO, B. Willke Dual Recycling Length Control

11 ESF 05 / GEO, B. Willke < 10 Hz > 10 Hz < 0.1Hz Michelson length control Reaction Pendulum: 3 coil-magnet actuators at intermediate mass, range ~ 100µm Electrostatic actuation on test mass bias 630V, range 0-900V= 3.5µm

12 ESF 05 / GEO, B. Willke Alignment Control differential wave-front sensing spot position control 4 degrees of freedom at MC 1 +4 at MC 2 +4 at MI (common mode) +2 at MI (differential mode) +2 at Signal-Recycling cavity 16 + 20 = 36

13 ESF 05 / GEO, B. Willke GEO 600 design sensitivity

14 ESF 05 / GEO, B. Willke Evolution of the GEO 600 Sensitivity

15 ESF 05 / GEO, B. Willke GEO600 Duty Cycle daterun nameduty cycle longest lock Jan 2002E775%3h 40min Aug 2002S198%121h Nov 2003 Jan 2004 S3-I (7days) S3-II(14 days) 95% 98% 95h Aug 2004 – Jan 2005 over night runs (51 days) 94% Mar 2005S497%52h

16 ESF 05 / GEO, B. Willke S4  Feb 22nd – March 23rd, 708 hours  Two manned shifts/day (5-21 UTC), 1 „Expert-On-Duty“ 8-8UTC  Fully automated overnight shifts; SMS alarms to ‚E-O-D‘  Locking status  DAQS (DCUs running, frame making, timing, calibration)  Temperatures  Vacuum  Instrumental duty cycle 97.5%, 95% w/o noisy period, 72%>10h  Longest lock 52h

17 ESF 05 / GEO, B. Willke detector characterization  Sensitivity  Min/max spectrum of h(t)  15 BLRMS of h(t)  Inspiral monitor  Spectrogram of h(t)  Calibration  Data quality  Chi2  Calibration parameters  Bursts (HACRmon)  Time frequency distribution  SNR distribution  Duration  Bandwidth  Lines (Linemon)  Line cataloguing  Harmonic identification  Sideband identification

18 ESF 05 / GEO, B. Willke Typical S4 Sensitivity h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains h(t): derived from two quadratures of MI diff. EP diff. calibration: estimation of optical gain + MID loop gain (for online calibration) noise proj.: calibration lines for various online noise projections violin mode: fiber modes from the monolithic suspension stage MC turbo: turbo pump frequency (822 Hz) Mains: 50 Hz and multiples from mains

19 ESF 05 / GEO, B. Willke Calibration

20 ESF 05 / GEO, B. Willke On-line optical TF measurements actuator optical CAL P and Q h

21 ESF 05 / GEO, B. Willke Calibration radiation pressure calibrator ?

22 ESF 05 / GEO, B. Willke Photon Pressure Calibrator Good agreement with ESD calibration Wavelength: 1035 nm @ 20°C Max. power: 1.4 W, FWHM= 0.66nm

23 ESF 05 / GEO, B. Willke Optical Gain

24 ESF 05 / GEO, B. Willke Calibrated EP Quadrature Signals h [1/sqrt(Hz)]

25 ESF 05 / GEO, B. Willke Combining hP(t) and hQ(t) – results h [1/sqrt(Hz)] Get the best of h P and h Q plus a little extra!

26 ESF 05 / GEO, B. Willke Laser Michelson Interferometer Output Mode Cleaner Mode Cleaners 10W 1.6W 1500W (typ.) 2000W (max) at Beam Splitter 5W5W ~40mW T=0.09% Power Recycling Cavity: Mode matching>85% Finesse 8300 Linewidth 30 Hz 4/0.09%*1.6 = 7000 increase of power recycling factor

27 ESF 05 / GEO, B. Willke Thermal lensing in BS output mode pattern (PRMI) Directly after relocking f=20km A few minutes after relocking f= 8km → α≈0.3 +/- 0.05ppm/cm

28 ESF 05 / GEO, B. Willke GEO 600 design sensitivity

29 ESF 05 / GEO, B. Willke Tuning signal recycling to 300 Hz  lock acquisition at 5kHz  tuning needs to adjust of 6 parameters (look- up table)  improved input file for simulations and how to transfer results to experiment  achieved downtuning to 200Hz  MI AA instability could be fixed

30 ESF 05 / GEO, B. Willke Interferometer Readout - Sidebands phase modualtor laser beam splitter mirror photo detector

31 ESF 05 / GEO, B. Willke Schnupp – Modulation phase modualtor laser beam splitter mirror photo detector

32 ESF 05 / GEO, B. Willke Gravitational Wave Side Bands phase modualtor laser beam splitter mirror photo detector

33 ESF 05 / GEO, B. Willke Detuned Signal Recycling phase modualtor laser beam splitter mirror photo detector

34 ESF 05 / GEO, B. Willke Unbalanced Sidebands

35 ESF 05 / GEO, B. Willke Signal Recycling digital  digital loop allows for steep filter  noise contribution reduced by up to a factor of 200

36 ESF 05 / GEO, B. Willke Sqrt circuits in MI loop ESD: F  U^2 Sqrt circuits are necessary to give full linear force range for acquisition. Drawback: sqrt circuits are noisy 1µV/sqrt(Hz) (=100µV/sqrt(Hz) @ ESD)

37 ESF 05 / GEO, B. Willke MI loop whitening / dewhitening dewhiten Whiten Whitening right after mixer: zero 3.5 Hz pole 35 Hz Dewhitening for both split passes Passive dewhit- ening done in HV path (0-1kV)

38 ESF 05 / GEO, B. Willke sensitivity improvements since July

39 ESF 05 / GEO, B. Willke Evolution of the GEO 600 Sensitivity

40 ESF 05 / GEO, B. Willke Current vs. Design sensitivity

41 ESF 05 / GEO, B. Willke Non-stationary Noise

42 ESF 05 / GEO, B. Willke Near Future  finish commissioning  increase circulating power  find source of optical losses in PR cavity  increase MI loop gain between 1-10 Hz  improve RF circuitry  optimize stability  join S5 in overnight/weekend mode until commissioning is finished  fully join S5

43 ESF 05 / GEO, B. Willke


Download ppt "Status of GEO600 Benno Willke for the GEO600 team ESF Exploratory Workshop Perugia, September 2005."

Similar presentations


Ads by Google