Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,

Slides:



Advertisements
Similar presentations
Cassini UVIS Update: He 584  Dayglow at Saturn Christopher Parkinson Ian Stewart and Yuk Yung January 05, 2006.
Advertisements

Plasma-induced Sputtering & Heating of Titan’s Atmosphere R. E. Johnson & O.J. Tucker Goal Understand role of the plasma in the evolution of Titan’s atmosphere.
Searching for N 2 And Ammonia In Saturn's Inner Magnetosphere Polar Gateways Arctic Circle Sunrise 2008 Polar Gateways Arctic Circle Sunrise January.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer 1, D. E. Shemansky 2, X. Zhang 1, Y. L. Yung 1 1 Division of Geological and Planetary Sciences,
Enceladus and Titan: Prime targets in the search for life.
Oxygen: Stratosphere, Mesosphere and Thermosphere Part-3 Chemical Rate Equations Ozone Density vs. Altitude Stratospheric Heating Thermal Conductivity.
Titan’s Photochemical Model: Oxygen Species and Comparison with Triton and Pluto Vladimir Krasnopolsky Initial data: N 2 and CH 4 densities near the surface.
Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.
Propane on Titan H.G. Roe 1, T. Greathouse, M. Richter, J. Lacy 1 Div. Of Geological and Planetary Sciences, CalTech Roe, H. et al. 2003, ApJ, 597, L65.
Distribution of H 2 O and SO 2 in the atmosphere of Venus Yung Y. 1, Zhang X. 1, Liang M.-C. 2 and Parkinson C. 3 1 California Institute of Technology.
Titan in context (1) Hubble Space Telescope, 6 August 1995.
SATURN’S MYSTERIOUS MOON TITAN
Deuterated Methane and Ethane in the Atmosphere of Jupiter Christopher D. Parkinson 1,2, Anthony Y.-T. Lee 1, Yuk L. Yung 1, and David Crisp 2 1 Division.
METO 621 Lesson 27. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
METO 637 Lesson 23. Titan A satellite of Jupiter. Titan has a bulk composition of about half water ice and half rocky material. Although similar to the.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Photochemical Distribution of Venusian Sulphur and Halogen Species AND Why Vulcanism cannot be the source for Venusian SO 2 above 80km C. D. Parkinson.
Chemistry of Venus’ Atmosphere Vladimir A. Krasnopolsky Photochemical model for km Photochemical model for km Chemical kinetic model for.
Different options for the assimilation of GPS Radio Occultation data within GSI Lidia Cucurull NOAA/NWS/NCEP/EMC GSI workshop, Boulder CO, 28 June 2011.
Response of Middle Atmospheric Hydroxyl Radical to the 27-day Solar Forcing King-Fai Li 1, Qiong Zhang 2, Shuhui Wang 3, Yuk L. Yung 2, and Stanley P.
 Assuming only absorbing trace gas abundance and AOD are retrieved, using CO 2 absorption band alone provides a DOF ~ 1.1, which is not enough to determine.
Upper haze on the night side of Venus from VIRTIS-M / Venus Express limb observations D. Gorinov (1,2), N. Ignatiev (1,2), L. Zasova (1,2), G. Piccioni.
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
The state of the plasma sheet and atmosphere at Europa D. E. Shemansky 1, Y. L. Yung 2, X. Liu 1, J. Yoshii 1, C. J. Hansen 3, A. Hendrix 4, L. W. Esposito.
Summary  We have implemented numerically stable, continuous method of treating condensation on to grains in Titan’s atmosphere.  Our model can establish.
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
DPS 2002, Oct 9Triton Atmosphere Triton's atmosphere in 1989: new lab data, new profiles Leslie Young (SwRI) Glenn Stark (Wellesley) Ron Vervack (JHU/APL)
First global view of the Extratropical Tropopause Transition Layer (ExTL) from the ACE-FTS Michaela I. Hegglin, University of Toronto, CA Chris Boone,
Response of the Earth’s environment to solar radiative forcing
Mao-Chang Liang 1,2, Claire Newman 3, Yuk L. Yung 3 1 Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan 2 Graduate Institute of.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,
X. Zhang 1, R. Shia 1, M. Liang 2, C. Newman 1, D. Shemansky 3, Y. Yung 1, 1 Division of Geological and Planetary Sciences, California Institute of Technology,
Studying the Venus terminator thermal structure observed by SOIR/VEx with a 1D radiative transfer model A. Mahieux 1,2,3, J. T. Erwin 3, S. Chamberlain.
1 3D-Var assimilation of CHAMP measurements at the Met Office Sean Healy, Adrian Jupp and Christian Marquardt.
Results We first best-fit the zonal wind and temperature simulated in the 3D PlanetWRF using the semi- analytic 2D model with,,, and. See Fig 2. The similarity.
Rev 131 Enceladus’ Plume Solar Occultation LW Esposito and UVIS Team 14 June 2010.
The Composition and Structure of Enceladus’ Plume from the Cassini UVIS Solar Occultation C. J. Hansen, L. Esposito, D. Shemansky, A. I. F. Stewart, A.
Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
Haze and cloud in Pluto atmosphere Pascal Rannou, Franck Montmessin Service d'Aéronomie/IPSL, Université Versailles-St-Quentin.
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Titan: FUV Limb Spectra From 2004 and EUV Laboratory Cross Sections and Observations JOSEPH AJELLO JPL MICHAEL STEVENS NRL JACQUES GUSTIN LPAP GREG.
Rev 51 Enceladus Zeta Orionis Occultation Analysis Status 9 January 2008.
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
Analysis of Density Waves in UVIS Ring Stellar Occultations
UVIS Saturn Atmosphere Occultation Prospectus
UVIS Data Analysis and Modeling: Saturn FUV images
XM Status and Plans, XXM Activities Icy Satellite Science
HDAC analysis: Hydrogen in Titan‘s exosphere
JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JACQUES GUSTIN LPAP
Photochemical processes on Titan
Titan tholin properties from occultation and emission observations
Saturn upper atmosphere structure
CH 3: The Electromagnetic Spectrum
Iapetus as measured by Cassini UVIS
* 07/16/96 Constraints on Titan’s Hign Haze from Cassini UVIS/ISS and Huygens DISR Observations *
Jet Propulsion Lab, California Institute of Technology
Titan H2O Clouds + ISS/UVIS
Monitoring Saturn's Upper Atmosphere Density Variations Using
Saturn temperature and H2 profiles from Solar EUV occultations
UVIS Occultation Geometry Summary
Cassini UVIS solar occultation
UVIS Saturn EUVFUV Data Analysis
Effects and magnitudes of some specific errors
GEOMETER Update Get new version of GEOMETER from Team web site after August 8. Some new parameters now computed (illum angles for “near point” of non-intersecting.
Revised tholin profile for the atmosphere of Titan
Model Calculations of the Ionosphere of Titan during Eclipse Conditions Karin Ågren IRF-U, LTU.
UVIS Titan T0, TA Analysis
UVIS Goals for CSM R. West.
Presentation transcript:

Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena, CA ‡ Space Environment Technologies, Pasadena, CA DPS 44 th Meeting Reno, NV Oct. 17, 2012

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Stellar and solar occultations in EUV and FUV using Cassini UVIS Probes region between 300 to 1500km

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Stellar and solar occultations in EUV and FUV using Cassini UVIS Probes region between 300 to 1500km Everything starts at the top Photochemistry drives production of hydrocarbons, haze particles

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Stellar and solar occultations in EUV and FUV using Cassini UVIS Probes region between 300 to 1500km Everything starts at the top Photochemistry drives production of hydrocarbons, haze particles Previous work (Koskinen et al., 2011) examined FUV lightcurves EUV complementary source of information – N 2 and CH 4

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Stellar and solar occultations in EUV and FUV using Cassini UVIS Probes region between 300 to 1500km Everything starts at the top Photochemistry drives production of hydrocarbons, haze particles Previous work (Koskinen et al., 2011) examined FUV lightcurves EUV complementary source of information – N 2 and CH 4 Composition and temperature results from both solar and stellar observations

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Choice of occultation data sets Pointing drift can be major issue

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Choice of occultation data sets Pointing drift can be major issue

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Choice of occultation data sets Pointing drift can be major issue

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Choice of occultation data sets Pointing drift can be major issue

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Choice of occultation data sets Pointing drift can be major issue

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Choice of occultation data sets Pointing drift can be major issue

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Choice of occultation data sets Pointing drift can be major issue Out of ~25 total observations made by UVIS, selected: Four stellar occultations during T21, T35, and T41 (ingress and egress) Two solar occultations (T10, T53)

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Forward model of optical depth Cross sections for N 2 and CH 4 Windowed EUV region from about 900 to 1100 angstroms

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Forward model of optical depth Cross sections for N 2 and CH 4 Windowed EUV region from about 900 to 1100 angstroms

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Methodology Grid search of parameters Only 2 species in retrieval Can calculate χ 2 surface Marginalized posteriors

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Methodology Grid search of parameters Only 2 species in retrieval Can calculate χ 2 surface Marginalized posteriors

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Useful for comparison, but really want to measure densities Inverse Abel transform

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Interpolated density profiles 1-σ error region Nitrogen profiles appear to vary Wave like structure?

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere “Mean” state of atmosphere How does this compare to INMS?

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere INMS data for T26, T32, and T41 Westlake et al., 2011

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Effective temperatures from hydrostatic fits to geopotential height for N 2 Widely varying temperatures: T10: 184K – T21: 153K – T35: 218K T41: 136K – T41: 124K – T53: 160K

J. A. Kammer et al.DPS 44 th Meeting, 2012Nitrogen Chemistry in Titan’s Upper Atmosphere Summary EUV observations complementary to FUV hydrocarbon profiles Some difficulties due to pointing Simple process to convert lightcurves to abundances, then densities Comparison to INMS Effective temperatures from hydrostatic fits to geopotential height for N 2