Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures 16, 17, 18.

Slides:



Advertisements
Similar presentations
Newton’s Laws of Motion and Free Body Analysis
Advertisements

AP Physics B Summer Course 年AP物理B暑假班
a) The kinetic energy of the car. b) The distance it takes to stop.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 19.
Instructor: Dr. Tatiana Erukhimova
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 23.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures Hw: Chapter 13 problems and exercises Reading: Chapter 14.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 19.
Instructor: Dr. Tatiana Erukhimova
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 17.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 18.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 10.
Instructor: Dr. Tatiana Erukhimova
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 13.
Instructor: Dr. Tatiana Erukhimova
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 12.
Work and energy.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Sections 818, 819, 820, 821 Lecture 10.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 23.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 15.

Instructor: Dr. Tatiana Erukhimova
Physics Instructor: Dr. Tatiana Erukhimova Lecture 6.
General Physics 1, Additional questions By/ T.A. Eleyan
A block is launched up a frictionless 40° slope with an initial speed v and reaches a maximum vertical height h. The same block is launched up a frictionless.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Sections 807, 808, 809 Lecture 8.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 11.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 23.
James Prescott Joule b. Dec. 24, 1818, Salford, Lancashire, England d. Oct. 11, 1889, Sale, Cheshire Discovered some basic laws of electricity and thermodynamics.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 11.
T101Q7. A spring is compressed a distance of h = 9.80 cm from its relaxed position and a 2.00 kg block is put on top of it (Figure 3). What is the maximum.
Chapter 7 Work and Energy
Chapter 7 Work and Energy
Bellringer 10/25 A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion,
Chapter 5 Work and Energy. Force, displacement  WORK.
Problems Chapter 4,5.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures 13, 14, 15.
Work and Energy. Work a force that causes a displacement of an object does work on the object W = Fdnewtons times meters (N·m) or joules (J)
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures 13, 14, 15.
Physics 111 Practice Problem Statements 06 Work and Kinetic Energy SJ 8th Ed.: Ch. 7.1 – 7.5 Contents: 7-7E*, 7-15E, 7-19P, 7-22P, 7-23P, 7-25E*, 7-31E*,
Energy Examples Serway and Jewett 8.1 – 8.3 Physics 1D03 - Lecture 22.
Advanced Problems 3 These problems will contain:
Copyright © 2009 Pearson Education, Inc. © 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for.
Chapter 7 Work and Energy HW5 due on Monday 12 instead of Friday 9. Study Guide will be posted on Friday 9.
Work and Energy x Work and Energy 06.
Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm.
Instructor: Dr. Tatiana Erukhimova
Physics Instructor: Dr. Tatiana Erukhimova Lecture 6.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures 17, 18.
An 7.3-kg object rests on the floor of an elevator which is accelerating downward at a rate of 1.0 m/s 2. What is the magnitude of the force the object.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures
Instructor: Dr. Tatiana Erukhimova
Instructor: Dr. Tatiana Erukhimova
Instructor: Dr. Tatiana Erukhimova
Instructor: Dr. Tatiana Erukhimova
Work and Power Quiz Solutions
Instructor: Dr. Tatiana Erukhimova
Instructor: Dr. Tatiana Erukhimova
Instructor: Dr. Tatiana Erukhimova
Potential Energy Problems
Instructor: Dr. Tatiana Erukhimova
Potential Potential Energy
Lecture 4 Work & Energy.
Unit 5 ENERGY.
Instructor: Dr. Tatiana Erukhimova
Instructor: Dr. Tatiana Erukhimova
T101-Q-1 Figure 1 shows the spring force as a function of position x for a spring-block system resting on a frictionless table. The block is released at.
Presentation transcript:

Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures 16, 17, 18

F Find F necessary to drag the box 1 at constant speed. 1 2 Friction everywhere.

The advantage of a pulley What minimum force F is needed to lift the piano of mass M?

WORK (Chapter 7)

2 or 3 D motion Definition of work: Kinetic energy: Work-energy theorem:

A person carries a bag of groceries of mass M with a constant velocity at the same height from the ground. Find the work done by a person on a bag.

Problem 1 p. 122 A man pushes up on a 100 kg block with a force such that it drops from 2 meters to the ground at a constant velocity. a)How much work is done by gravity? b)What is the magnitude of the force he exerts?

A block of mass m starts at the top of an inclined plane. The coefficient of friction between the plane and the block is . Assuming the block slides down the plane calculate the work done by each force.

Work Energy Theorem

A person is pulling a crate of mass M along the floor with a constant force F over a distance d. The coefficient of friction is . (a)Find the work done by the force F on the crate. (b)Same if F changes as F 0 (1+x 2 /d 2 ). (c)Find the work done by the force of friction on the crate (F is constant). (d)Find the net work done on the crate if the crate is pulled with a constant velocity. (e)Find the final velocity of the crate if the crate is pulled with a non-zero acceleration starting from the rest. M

x

Problem 2 p.122 A 3 slug mass is attached to a spring which is pulled out one foot. The spring constant k is 100 pounds/ft. How fast will the mass be moving when the spring is returned to its unstretched length? (Assume no friction.)

A 5.00 kg block is moving at v 0 =6.00 m/s along a frictionless, horizontal surface toward a spring with constant k=500 N/m that is attached to a wall. a)Find the maximum distance the spring will be compressed. b)If the spring is to compress by no more than m, what should be the maximum value of v 0 ?

Quiz Ch7 y A block of mass m slides down on the larger block of mass M (see the figure below). There is non-zero coefficient of friction between the two blocks. Neglect the friction between the block of mass M and the table. 1) Plot the free body diagram for each of the blocks; 2) Find the work done by gravity on the block of mass m (the smaller one) in two coordinate systems shown above, if the height of the inclined plane is H. x x y

Have a great day! Reading: Chapter 7 Hw: Chapter 7 problems and exercises