First high-resolution 3D inversion of the dust emission in Galactic ISM with Spitzer/Herschel. The case region [l,b]=[30,0] A. Traficante, R. Paladini,

Slides:



Advertisements
Similar presentations
Gas and mm Dust emission François Boulanger et Guilaine Lagache (Institut d Astrophysique Spatiale, Orsay) Tracing diffuse ISM components in te Solar Neighborhood.
Advertisements

Cold dust in the Galactic halo: first detection of dust emission in a high-velocity cloud : Francois Boulanger et Marc-Antoine Miville-Deschênes Miville.
Extended IR Emission from LIRGs V. Charmandaris, T. Diaz-Santos, (Univ. of Crete) L. Armus & A. Petric (SSC/Caltech)
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
The Distribution of the Milky Way ISM as revealed by the [CII] 158um line. Jorge L. Pineda Jet Propulsion Laboratory, California Institute of Technology.
A MOPRA CS(1-0) demonstration survey of the Galactic plane G. Fuller, N. Peretto, L. Quinn (University of Manchester UK), J. Green (ATNF ) All dust continuum.
Filamentary Structures in Molecular Clouds and their connection with Star Formation E.Schisano 1, S.Molinari 1, D.Polychroni 1, D.Elia 1, M.Pestalozzi.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
Constraining the Physics of Star Formation in Galaxies Using the JVLA and GBT Amanda Kepley NRAO - GB.
Radio Science and PILOT Tony Wong ATNF/UNSW PILOT Workshop 26 March 2003.
Heiles meeting, Sep 04 Where is the Atomic Carbon in Ophiuchus Di Li Paul Goldsmith Gary Melnick and SWAS team.
Multiwavelength Sky by NASA. Radio Continuum (408 MHz). Intensity of radio continuum emission from surveys with ground- based radio telescopes (Jodrell.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Radio Astronomy And The Spiral Structure Of The Milky Way Jess Broderick Supervisor: Dr George Warr.
Although there are regions of the galaxy M33 which show both high density neutral hydrogen gas and 24 micron emission, high density gas does not always.
Observations of anomalous dust emission (AME) with AMI
Hamburg, September Observation of Carbon Radio Recombination Lines Towards Dust Cloud L1407 at decameter wavelengths. S. V. Stepkin, A. A.
A Herschel Galactic Plane Survey of [NII] Emission: Preliminary Results Paul F. Goldsmith Umut Yildiz William D. Langer Jorge L. Pineda Jet Propulsion.
Der Paul van der Werf & Leonie Snijders Leiden Observatory The anatomy of starburst galaxies: sub-arcsecond mid-infrared observations Lijiang August 15,
Mapping Hydrogen in the Galaxy, Galactic Halo and Local Group with the Galactic Arecibo L-Band Feed Array (GALFA) The GALFA-HI Survey starting with TOGS.
Optical Observations of High- Latitude Clouds Adolf N. Witt University of Toledo.
The Milky Way Center, Shape Globular cluster system
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
The CNM – How Much, How Cold, and Where? John Dickey University of Tasmania 4 February 2013 C + as an Astronomical Tool.
Compact HII regions toward Methanol Maser traced sources of Massive Star Formation Adam Avison (UK ARC, JBCA) Gary Fuller + MMB Collaboration.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
A hot topic: the 21cm line I Benedetta Ciardi MPA.
Stratospheric Terahertz Observatory (STO)‏ 0.8-meter telescope, 1' um Heterodyne receiver arrays for wide-field [N II] and [C II] spectroscopy,
The Canadian Galactic Plane Survey Mapping the Ecology Of the Milky Way Galaxy.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Accurate measurement of interstellar hydrogen as the target of hadronic gamma rays Yasuo Fukui Nagoya University Southern Observatories CTA meeting April.
The Canadian Galactic Plane Survey What is the CGPS? Status and some results What’s next? Mapping the Ecology of the Milky Way Galaxy.
Photoionisation of Supernova Driven, Turbulent, MHD Simulations of the Diffuse Ionised Gas Jo Barnes 1, Kenny Wood 1, Alex Hill 2 [1]University of St Andrews,
Direct Physical Diagnostics of Triggered Star Formation Rachel Friesen NRAO Postdoctoral Fellow North American ALMA Science Center C. Brogan, R. Indebetouw,
Radio Astronomy Emission Mechanisms. NRAO/AUI/NSF3 Omega nebula.
Studying Young Stellar Objects with the EVLA
ASIAA Interferometry Summer School – 2006 Introduction – Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Atmospheric window to the electromagnetic waves.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
The structure of our Milky Way galaxy: a container of gas and stars arranged in various components with various properties.. Gaseous halo? ~ 6 x
Allen et al. (2005) Johnstone et al. (2000). Oph B2 850  m continuum (JCMT) NH 3 (1,1) int. intensity (GBT) NH 3 emission shows excellent (but not perfect)
The infrared extinction law in various interstellar environments 1 Shu Wang 11, 30, 2012 Beijing Normal University mail.bnu.edu.cn.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
Viewing the Galaxy through Hi-GAL Michele Pestalozzi On behalf of the Hi-GAL team.
Jet Propulsion Laboratory
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Radio Galaxies Part 3 Gas in Radio galaxies. Why gas in radio galaxies? Merger origin of radio galaxies. Evidence: mainly optical characteristics (tails,
Star Formation and H2 in Damped Lya Clouds
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Chapter 14 The Interstellar Medium. All of the material other than stars, planets, and degenerate objects Composed of gas and dust ~1% of the mass of.
Galactic Legacy Projects Naomi McClure-Griffiths Australia Telescope National Facility, CSIRO NRAO Legacy Projects Meeting, 17 May 2006.
Discovery and Characterization of Galactic Ionized Nebulae with WHAM Peter Doze, Texas Southern University Advisor: Dr. Bob Benjamin University of Wisconsin-Madison.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
Bolocam Galactic Plane Survey Herschel Hi-GAL Plane Survey
Filamentary Structures Traced by IRDCs
The MALT90 survey of massive star forming regions
Excitation of H2 in NGC 253 Marissa Rosenberg
Thin, Cold Strands of Hydrogen in the Riegel-Crutcher Cloud
Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey
The Interstellar Medium
Dust Polarization in Galactic Clouds with PICO
Presentation transcript:

First high-resolution 3D inversion of the dust emission in Galactic ISM with Spitzer/Herschel. The case region [l,b]=[30,0] A. Traficante, R. Paladini, A. Noriega-Crespo, M. Compiegne, S. Molinari, P. Natoli et al.

Outline 1.The contest and the inversion model overview 2. New data capabilities 3. The selected region 4. Results and emissivities interpretation 1. Conclusions A. Traficante et al. Tor Vergata/Caltech MW /09/11

The contest Dust is a fundamental ISM component dust grains re-radiate stellar photons UV IR - mm tracer of star formation activity, radiation field intensity, … A. Traficante et al. Tor Vergata/Caltech MW /09/11 Infrared maps are a blending of dust emission associated with gas in different phases along the line of sight (LOS) = ++

Inversion dust model Atomic, Molecular Ionized hydrogen constant dust-to-gas ratio one dust temperature in each gas phase as a function of Galactocentric distance Uncorrelated regions along LOS A. Traficante et al. Tor Vergata/Caltech MW /09/11 Infrared maps are a blending of dust emission associated with gas in different phases along the LOS Bloemen et al. 1990

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Inversion history Data availability (H + ) Bloemen et al. 1990; Giard et al. 1994; Sodroski et al. 1997; Paladini et al. 2007; Planck Coll. et al Gas phaseRadio Tracer HI21 cm line H2H2 12 CO H+H+ free-free continuum – if considered! ( e.g., Giard et al. 1994) “the spatial correlation between the ionized medium and the molecular hydrogen along the LOS has to be separated” (Sodroski et al. 1989, Paladini et al. 2007) Requirements:  ring selection  statistical approach  Column density estimation Limits: Results:average Galactic dust properties Data Resolution:0.7° - 1° AIM: Recovery of Galactic dust properties over the full sky (or a big chunk of it)

A. Traficante et al. Tor Vergata/Caltech MW /09/11 New data capabilities Spitzer Legacy surveys GLIMPSE 8 μ m\MIPSGAL 24 μ m Band (μm) Angular Res. (arcsec) Benjamin et al Carey et al Molinari et al Traficante et al Herschel Galactic Plane survey Hi-GAL μ m Hi-PASS ZOA survey 6 cm Angular Resolution 900” Staveley-Smith et al Alves et al Radio Recombination Lines (RRLs) Velocity Res km/s IRIR RADIORADIO

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Local ISM study AIM: Requirements: Testing inversion method on high resolution data using a selected region of the Galactic Plane (2° x 2°): Hi-GAL tile centered on (l,b)=(30,0). We want to take into account the specific physical content of this region. We want also to test the limits of this approach.  ring selection  column density estimation Gas phaseRadio Tracer HI21 cm line H2H2 12 CO & 13 CO H+H+ RRLs Data Resolution: 15’ spatial resolution

A. Traficante et al. Tor Vergata/Caltech MW /09/11 The region Hi-GAL l=30° 2° x 2° degrees Hi-GAL tile centered on (l,b)=(30,0) 30 HII regions (Paladini et al. 2003) the brightest: W43 (Bally et al. 2010) ~75 molecular clouds (Rathborne et al. 2009) ~ 340 IRDC (Peretto et al. 2010) HI cold features (Gibson et al. 2004) Diffuse emission properties (Bernard et al. 2010, Paradis et al. 2010) Difficulties due to the confusion along the LOS W43

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Requirements: rings selection Tangent point: ≈4.25 Kpc Scutum-Crux arm intersection 4.25 ≤ R ≤ 5.6 Kpc 5.6 ≤ R ≤ 7.4 Kpc 7.4 ≤ R ≤ 8.5 Kpc 8.5 ≤ R ≤ 16.0 Kpc Russeil, D. 2003

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Requirements: HI and H 2 column densities VGPS survey Stil et al Angular Res. 60” Velocity Res. 1.3 Km/s T s highest T b along the LOS T s = 140 K Strasser et al e.g. Binney & Merrifiled 1998 HI H2H2 12 CO UMSB survey Sanders et al Angular Res. 44”(180”) Vel. Res. 1 Km/s 13 CO GRS survey Jackson et al Angular Res. 46” Vel. Res Km/s 12 CO only regions X CO = 1.8 Abdo et al CO + 13 CO regions Excitation temperature 12 CO & 13 CO Optical depth 12 CO & 13 CO Column density estimation Pineda et al. 2010; Duval et al. 2010

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Requirements: H + column density Hi-PASS ZOA survey Staveley-Smith et al Angular Res. 900” Velocity Res km/s Radio Recombination Lines (RRL) H166α H167α H168α H+H+ Alves et al Sodroski et al cm -3 W43 peak 0.39 cm -3 diffuse T e = 5500 K Alves et al. 2010

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Results: Scutum-Crux ring Atomic phase Ionized phase Molecular phase DustEM fit, Compiegne et al. 2011

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Results: Scutum-Crux ring GAS phasesDust temperature (K) Atomic19.52 ± 0.71 Molecular19.91 ± 1.51 Ionized23.15 ± 1.02 Atomic phase Molecular phase DustEM fit, Compiegne et al GAS phasesY PAH Atomic1.83 ± 0.35 Molecular0.97 ± 0.31 Ionized0.72 ± 0.25

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Discussion: other rings Q: The model does not fully converge. Why? A: If the gas is not entirely traced (dark gas, Grenier et al )  the column densities are underestimated  the model calculates wrong emissivities Missing column density  less correlation column density maps – infrared maps: Pearson’s correlation coefficients Hi-GAL 250 μm Ring 1Ring 2Ring 3Ring 4 HI H2H H+H

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Discussion: other rings Hi-GAL 250 μm Ring 1Ring 2Ring 3Ring 4 HI H2H H+H Q: The model does not fully converge. Why? A: If the gas is not entirely traced (dark gas, Grenier et al )  the column densities are underestimated  the model calculates wrong emissivities Missing column density  less correlation column density maps – infrared maps: Pearson’s correlation coefficients

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Gibson et al Hi-GAL 250μm HI: 7.4 < R < 8.5 Kpc W43 Discussion: HI ring 3 Pearson’s coeff. =

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Gibson et al Hi-GAL 250μm HI: 7.4 < R < 8.5 Kpc W43 Discussion: HI ring 3 Wrong column density estimation Negative Emissivities Absorption features Anticorrelated region

A. Traficante et al. Tor Vergata/Caltech MW /09/11 The model with no H + Without considering ionized hydrogen component the model distributes the excess in particular to the most correlated component Dust associated with ionized hydrogen was a matter of debate in the past(Sodroski et al. 1989, Paladini et al. 2007, …) SPIRE 250 μm Ring 1 HI0.49 H2H H+H T(H 2 ) > T(HI) !?!

A. Traficante et al. Tor Vergata/Caltech MW /09/11 The model with no H + Without considering ionized hydrogen component the model distributes the excess in particular to the most correlated component Dust associated with ionized hydrogen was a matter of debate in the past(Sodroski et al. 1989, Paladini et al. 2007, …) SPIRE 250 μm Ring 1 HI0.49 H2H H+H T(H 2 ) > T(HI) !?!

A. Traficante et al. Tor Vergata/Caltech MW /09/11 Conclusion We have tested the inversion method taking into account the specific physical properties of a selected region of the Plane. We have modeled the dust emissivities associated to each phase of the gas (DustEM, Compiegne et al. 2010). T(H + ) > T(H 2 ) > T(HI) Indication of PAH depletion in a diffuse region of the Galactic Plane Evidence of HI and H 2 not traced with standard tracers. The analysis of the Pearson’s coefficient allows us to identify regions of absorption (cold HI). Traficante et al. 2011, in preparation

21 Alessio Traficante Tor Vergata / Caltech Analysis: molecular hydrogen Isolate the region where both 12 CO and 13 CO were observed Evaluate Tex using 12 CO map Stahler & Palla 2005 Pineda et al. 2010, Duval et al Measure 13 τ assuming 13 T ex = 12 T ex Estimate N( 13 CO) Estimate N(H 2 )

A. Traficante et al. Tor Vergata/Caltech MW /09/11 n eff diffuse(cm -3 )n eff W43 peak (cm -3 ) From the continuum ? 1. Diffuse 2. Compact HII 1.5 Gaussian Alves et al Parkes 6cm, Filipovic et al. 1995