Sensitivity on sterile neutrinos with sources in Borexino A.Ianni Phys. Dept., Princeton May 9th, 2011.

Slides:



Advertisements
Similar presentations
1 3+2 Neutrino Phenomenology and Studies at MiniBooNE PHENO 2007 Symposium May 7-9, 2007 U. Wisconsin, Madison Georgia Karagiorgi, Columbia University.
Advertisements

Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
MiniBooNE: (Anti)Neutrino Appearance and Disappeareance Results SUSY11 01 Sep, 2011 Warren Huelsnitz, LANL 1.
Miami 2010 MINIBOONE  e e  2008! H. Ray, University of Florida.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Source Neutrino Experiments
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
LSND/MiniBooNE Follow-up Experiment with DAEdALUS W.C. Louis Los Alamos National Laboratory August 6, 2010.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Neutrino Physics - Lecture 6 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Experimental Status of Geo-reactor Search with KamLAND Detector
Reactor & Accelerator Thanks to Bob McKeown for many of the slides.
Sergio Palomares-Ruiz June 8, 2005 LS N D imits olutions ew iscoveries et’s peak about LSND eutrinos in elphi WIN’05 20th International Workshop on Weak.
Solar & Atmospheric. June 2005Steve Elliott, NPSS Outline Neutrinos from the Sun The neutrinos Past experiments What we know and what we want to.
SBNW11 Summary June 23, 2011 Louis – Experimental Results & Theoretical Interpretations Van de Water – Future Facilities & Experiments.
October 3, 2003IFIC, UVEG-CSIC A road map to solar fluxes, osc. param., and test for new physics Carlos Pena Garay IAS ~
8/5/2002Ulrich Heintz - Quarknet neutrino puzzles Ulrich Heintz Boston University
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
NEUTRINO PROPERTIES J.Bouchez CEA-Saclay Eurisol town meeting Orsay, 13/5/2003.
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
Experimental Approaches to Sterile Neutrinos Using Low Energy Neutrinos Jonathan Link Center for Neutrino Physics Virginia Tech NOW /14/12 9/14/12.
1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Neutrino oscillation physics II Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
ELECTROMAGNETIC INTERACTIONS OF NEUTRINOS IN MATTER Int. School of Nuclear Physics Probing hadron structure with lepton & hadron beams.
February 23, 2005Neutrino Telescopes, Venice Comparing Solar and KamLAND Data Comparing Solar and KamLAND Data Carlos Pena Garay IAS, Princeton ~
MiniBooNE and the Hunt for Low Mass Sterile Neutrinos 1H. Ray, University of Florida.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE NuFact’07 Okayama, Japan Georgia Karagiorgi, Columbia University August 10, 2007.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Determination of activity of 51 Cr source on gamma radiation measurements V.V.Gorbachev, V.N.Gavrin, T.V.Ibragimova, A.V.Kalikhov, Yu.M.Malyshkin,A.A.Shikhin.
1 GEMMA: experimental searches for neutrino magnetic moment JINR: V. Brudanin, V. Egorov, D. Medvedev, M. Shirchenko, E. Shevchik, I. Zhitnikov, V. Belov.
A Letter of Intent to Build a MiniBooNE Near Detector: BooNE W.C. Louis & G.B. Mills, FNAL PAC, November 13, 2009 Louis BooNE Physics Goals MiniBooNE Appearance.
1 New Compact Low Energy Neutrino Source using Isotope Beta Decay Mike Shaevitz - Columbia University Workshop on Low Threshold Detectors for Detection.
Search for Sterile Neutrino Oscillations with MiniBooNE
1 Neutrino Physics 2 Pedro Ochoa May 22 nd What about solar neutrinos and the solar neutrino problem? KamLAND uses the entire Japanese nuclear.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
Sterile Neutrinos at Borexino SOX G. Ranucci – INFN Milano On behalf of the Borexino Collaboration European Strategy for Neutrino Oscillation Physics -
1 Luca Stanco, INFN-Padova (for the OPERA collaboration) Search for sterile neutrinos at Long-BL The present scenario and the “sterile” issue at 1 eV mass.
SAGE: status and future SAGE: V.N. Gavrin Institute for Nuclear Research of the Russian Academy of Sciences, Moscow.
Kam-Biu Luk 28 Nov, 2003 Neutrino at Daya Bay Kam-Biu Luk University of California, Berkeley and Lawrence Berkely National Laboratory.
Sterile neutrinos at the Neutrino Factory IDS-NF plenary meeting October 19-21, 2011 Arlington, VA, USA Walter Winter Universität Würzburg TexPoint fonts.
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
Robert Cooper. What is CENNS? Coherent Elastic Neutrino-Nucleus Scattering To probe a “large” nucleus Recoil energy small Differential energy spectrum.
Light Sterile Neutrinos: The Evidence Jonathan Link Virginia Tech Workshop on Neutrinos at the SNS Oak Ridge National Lab 5/2/12 5/2/12 5/2/2012Jonathan.
Results and Implications from MiniBooNE: Neutrino Oscillations and Cross Sections 15 th Lomonosov Conference, 19 Aug 2011 Warren Huelsnitz, LANL
STERILE NEUTRINOS and other exotica. Neutrino physics Official do-it list  13 ? Improve  12,  23 Mass hierarchy Improve m 1, m 2, m 3 Dirac or Majorana.
Results from Borexino Davide Franco CNRS-APC NOW 2012 September 9-16, 2012.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Center for Neutrino Physics Source Neutrino Experiments Jonathan Link Center for Neutrino Physics Virginia Tech NuFact 2016.
Neutrino oscillations with radioactive sources and large detectors Wladyslaw H. Trzaska on behalf of: Yu.N. Novikov, T. Enqvist, A.N. Erykalov, F. v.Feilitzsch,
Aldo Ianni for the Borexino collaboration 12th International Workshop on Next Generation Nucleon Decay and Neutrino Detectors Zurich, 7 th Nov 2011.
Neutrino physics: The future Gabriela Barenboim TAU04.
51 Cr Source Experiments for Sterile Neutrinos Jonathan Link Virginia Tech Sterile Neutrinos at the Crossroads 9/27/2011.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
Reactor anti-neutrinos and neutrinos
NESSiE and Muon Detection in magnetized Detectors
SoLid: Recent Results and Future Prospects
Sterile Neutrinos and WDM
Sterile Neutrino Searches with Sources and Reactors
Neutrino mass and mixing: 2006 Status
Search for sterile neutrinos with SOX: Monte Carlo studies of the experiment sensitivity Davide Basilico 1st year Workshop – 11/10/17 Tutors: Dott. Barbara.
Raju and Radioactive Neutrino Source Experiments
Presentation transcript:

Sensitivity on sterile neutrinos with sources in Borexino A.Ianni Phys. Dept., Princeton May 9th, 2011

Outline Introduction – Anomalies/hints for sterile neutrinos in the framework of neutrino phenomenology Hints from Cosmology and BBN The Borexino experiment – Main feature and present results An artificial neutrino source in Borexino – The physics case and the sterile neutrino search Conclusions

Standard interpretation of neutrino phenomenology Data from experiments on solar neutrinos, long-baseline reactor neutrinos, atmospheric neutrinos and from accelerators explained in the framework of Three-neutrino mixing oscillations with two squared-mass differences

The case ot two-neutrino oscillations

Global fit of three neutrino mixing Leading  m 2 12 oscillations – Solar neutrino and KamLAND data – Solar neutrino: Homestake, Gallex/GNO, SAGE, SNO, SuperKamiokande and Borexino Leading  m 2 31 oscillations – Atmospheric neutrinos, CHOOZ and LBL accelerator (  disappearance and   -   e appearance) data – SuperKamiokande(I+II+III), K2K and MINOS

Mass hierarchy and oscillations  m 2 31  m 2 21 LBLSBL      m 2 21  m 2 31 Reactor anti-neutrinos 2 3

Anomalies/hints for  m 2 ≅ 1 eV 2

LSND and MiniBooNE LSND – Appearance: – L/E ~ (25-35 m)/(20 – 53 MeV) ~ 0.5 – 2 m/MeV – Electron anti-neutrino candidates: 87.9±22.4±6.0 (3.8  ) – P  e = 0.264±0.067±0.045 MiniBooNE – Appearance: – L/E ~ 1Km/1GeV – Neutrino mode: no evidence of oscillations above 450 MeV – Low energy ( MeV) excess: 128.8±20.4±38.3 (3.0  ) – Possible explanation from SBL disappearance Giunti, Laveder, PRD 82, (2010) – Anti-neutrino mode: 20.9±14.0 excess event – p-value of null hypothesis = 0.5% – p-value for 2 oscillation hypothesis = 9% – Oscillation hypothesis better at 99.5% C.L. L/E

Reactor anomaly A re-evaluation of the expected anti-neutrino flux from reactors has given a new boost to the possibility of 1-2 sterile neutrino scenarios – G.Mention et al., Reactor Anomaly, arXiv: – J.Kopp,M.Maltoni and T.Schwetz, Are there neutrinos at the eV scale?arXiv:

Reactor anomaly: 2  oscillation hypothesis No oscillation hypothesis rejected at 98.6% C.L.

Adapted from C. Giunti at Beyond3 

Adding 1-2 sterile neutrinos 3+1 mass scheme  m 2 31  m 2 21  m 2 SBL 3+2 mass scheme

3+1 scheme fit Giunti, Laveder PRD 83 (2011) MB + LSND _ _ Tension in the data when  and are combined _

Fit data in 3+1 and 3+2 scenarios  m 2 41 [eV 2 ] |U e4 |  m 2 41 [eV 2 ] |U e5 |   /dof [p-value] C.L. to reject null /67 [0.939] 98.6% /65 [0.96] 98.3% Data from J. Kopp, M. Maltoni and T. Schwetz, arXiv: Reactor anomaly  m 2 41 [eV 2 ] |U e4 ||U  |  m 2 41 [eV 2 ] |U e5 ||U  |   /dof [p- value] Reject 3+1 vs / 130 [0.896] 97.6% Reactor anomaly + LSND + MiniBooNE

The effect of 2 sterile neutrinos 850 m baseline Anti-neutrino Neutrino disappearance appearance

The case of reactor anti-neutrinos    m 13 ~3×10 -3 eV 2    m 12 ~10 -4 eV 2    m 14 ~0.1-1 eV 2 LBLSBL source

SBL approximation LBL disappearance for electron anti-neutrinos (KamLAND) can restrict |U e4 | 33

Constraints from cosmology 3 + N s scheme with ordinary neutrinos having m  gives m s  eV 3 + N s scheme with ordinary neutrinos having m  gives m s  eV J. Hamann et al, arXiv: Probe number of non-standard relativistic d.o.f.  eff which give a contribution to radiation in early Universe  eff > 0 delays radiation-matter equality N s = number of thermalized “sterile neutrinos” CMB + LSS in  CDM

Constraints from BBN Extra relativistic d.o.f. in thermal equilibrium in the early universe change the 4 He abundance, Y p –  Y p ~ 0.01  N eff BBN can provide information on mixing and masses of possible sterile neutrinos Needed a robust determination of Y p At present (1-2  ) hints for N > 3 (Izotov et al 2010) Mangano et al. 2001: N < 4.2 (95% C.L.)

Borexino

Borexino experiment Goals: 1)7Be solar neutrinos 2)8B solar neutrinos 3)Geo-neutrinos 4)SN neutrinos 5)Rare processes Method: 1)300 tons of high purity organic LS 2) High energy resolution 5%/1MeV 3) Good PSD 3) Good event vertex Reconstruction: ~12cm/1MeV Goals: 1)7Be solar neutrinos 2)8B solar neutrinos 3)Geo-neutrinos 4)SN neutrinos 5)Rare processes Method: 1)300 tons of high purity organic LS 2) High energy resolution 5%/1MeV 3) Good PSD 3) Good event vertex Reconstruction: ~12cm/1MeV

Solar neutrinos in Borexino hep-ex/ v1 7 Be = 46.0 ± 1.5 cpd/100 tons Bi pep & CNO 85 Kr removed! pp

Three-neutrino mixing global fit with Borexino Day-night measurement

Solar neutrino survival probability

Electron anti-neutrinos in Borexino Strong tagging Low background Strong tagging Low background

Systematic uncertainties

Position and energy calibration On and off axis calibrations sources Rn, AmBe 57 Co, 139 Ce, 208 Hg, 85Sr, 54 Mn, 65 Zn, 40 K, 60 Co

How to use a neutrino source in Borexino

The idea to use a neutrino source in Borexino and in other underground experiments – N.G.Basov,V.B.Rozanov, JETP 42 (1985) – Borexino proposal, 1991 – J.N.Bahcall,P.I.Krastev,E.Lisi, Phys.Lett.B348: ,1995 – N.Ferrari,G.Fiorentini,B.Ricci, Phys. Lett B 387, 1996 – I.R.Barabanov et al., Astrop. Phys. 8 (1997) – Gallex coll. PL B 420 (1998) 114 – A.Ianni,D.Montanino, Astrop. Phys. 10, 1999 – A.Ianni,D.Montanino,G.Scioscia, Eur. Phys. J C8, 1999 – SAGE coll. PRC 59 (1999) 2246 – SAGE coll. PRC 73 (2006) – C.Grieb,J.Link,R.S.Raghavan, Phys.Rev.D75:093006,2007 – V.N.Gravrin et al., arXiv: nucl-ex: – C.Giunti,M.Laveder, Phys.Rev.D82:113009,2010 – C.Giunti,M.Laveder, arXiv:

The physics case with a source experiment Neutrino magnetic moment Neutrino-electron non standard interactions Probe e - e weak couplings at 1 MeV scale Probe sterile neutrinos at 1 eV scale Probe neutrino vs anti-neutrino oscillations on 10m scale

Source location in Borexino A: underneath WT – D=825 cm – No change to present configuration B: inside WT – D = 700 cm – Need to remove shielding water C: center – Major change – Remove inner vessels – To be done at the end of solar neutrino physics A B C

Source position A

Source number of events center External source

Solid angle calculation  r  Rate only analysis Determine oscillation pattern vs source-vertex distance

Sources

51Cr ~36 kg of 38% enriched 50Cr 190 W/MCi from 320 keV 7  Sv/h (must be < 200) SAGE coll., PRC 59 (1999) 2246 Gallex coll., PL B 420 (1998) Done two times for Gallex at 35 MW reactor with effective thermal neutrons flux of ~5.4E13 cm -2 s -1 ~1.8 MCi

Cr51 Gallex source

The case of 51 Cr source in Borexino

37Ar 813 keV (9.8%) 811 keV (90.2%) 37 Cl 37 Ar(  =50.55 days) SAGE coll., PRC 73 (2006) ~16 W/MCi from 2.6 keV X-rays From irradiation of CaO using fast neutrons 40 Ca(n,  ) 37 Ar Used in SAGE with ~0.4 MCi

90Sr-90Y  Sr  = years  Y  = 3.8 days 90 Sr 90 Y Inverse beta decay Product of nuclear fission Used in thermoelectric generators Known technology for 0.2 MCi sources 7.25 kg/MCi ~6700 W/MCi including Bremsstrahlung 7.25 kg/MCi ~6700 W/MCi including Bremsstrahlung =2±0.2 MeV =7.2× cm 2

106Ru-106Rh  Ru  = 539 days  Rh  = days 106 Ru 106 Rh Inverse beta decay Product of nuclear fission =2.5±0.2 MeV =89.2× cm 2

Performance of Sources in Borexino Source [MeV] R FV [m] Interaction channel L osc [m]  m 2 =0.1 eV 2 L osc [m]  m 2 =1.5 eV 2 N ev /MCiN backgroun d 51Cr ES ~ 200 days ~ days 37Ar ES201.3~ days ~ days 90Sr-90Y ES211.4~ year ~ year 90Y IBD493.3~ year ~12 1 year 106Rh IBD ~ year ~12 1 year Source located at 8.25 m away from the center of Borexino 3.3m FV for neutrinos 4.25m FV for anti-neutrinos

Rate only sensitivity e 1% source activity accuracy + 1% FV accuracyReactor anomaly _ 90 Sr 1MCi D=825 cm

Rate only sensitivity e _ D = 825 cm D = 700 cm 90Sr IBD 1 year 1 MCi  m 2 ~ 0.2 eV 2 and sin 2 2  > 0.05

Rate only sensitivity e _ 106Ru IBD D=825 cm 1 year 1 MCi  m 2 ~ 0.3 eV 2 and sin 2 2  > Sr

51Cr: sensitivity to e into s 1% source activity accuracy + 1% FV accuracy + spatial resolution effect 51 Cr 5MCi D=825 cm

Exploit detector performances Good vertex position reconstruction – ~12 cm/1MeV Determine for each event the source-vertex distance and probe patter of oscillations Make an example case by MonteCarlo generation – Use 51 Cr 5MCi source at 8.25m from center of Borexino – Expected rate w/o osc events in 200 days – Assume (  m 2,sin 2 2  SBL  eV 2,0.15)

Fit waves pattern background Not oscillated signal (  m 2,sin 2 2  SBL  eV 2,0.15)

52 LNGS, Beyond Three Families - May 4 th, 2011M. Pallavicini - Dipartimento di Fisica - Università di Genova & INFN 90 Sr - 3 years - source in the center KamLAND bound

Conclusions There are a number of experimental anomalies/hints which could be explained in the framework of 3+1 and 3+2 scenarios Cosmology and BBN could bring important restriction At present LSND+MiniBoone anti-neutrino mode gives – Anti- data: <~ sin 2 (2  ee ) <~ 0.06 at 95% C.L. 0.2 <~  m 2 <~ 1 at 95% C.L. An artificial neutrino source experiment in Borexino will –  m 2 ~ 0.3 eV 2 and sin 2 2  > 0.04  outside the detector – Xx inside the detector