Divisibility and Modular Arithmetic

Slides:



Advertisements
Similar presentations
Equivalence Relations
Advertisements

1 Lect. 12: Number Theory. Contents Prime and Relative Prime Numbers Modular Arithmetic Fermat’s and Euler’s Theorem Extended Euclid’s Algorithm.
Cryptography and Network Security
Chapter 3 Elementary Number Theory and Methods of Proof.
Chapter 4 Finite Fields. Introduction of increasing importance in cryptography –AES, Elliptic Curve, IDEA, Public Key concern operations on “numbers”
Cryptography and Network Security Chapter 4 Fourth Edition by William Stallings.
Chapter 4 – Finite Fields. Introduction will now introduce finite fields of increasing importance in cryptography –AES, Elliptic Curve, IDEA, Public Key.
The Integers and Division. Outline Division: Factors, multiples Exercise 2.3 Primes: The Fundamental Theorem of Arithmetic. The Division Algorithm Greatest.
1 Section 2.4 The Integers and Division. 2 Number Theory Branch of mathematics that includes (among other things): –divisibility –greatest common divisor.
CSE115/ENGR160 Discrete Mathematics 03/13/12 Ming-Hsuan Yang UC Merced 1.
Number Theory and Cryptography
2.3 Multiplication and Division of Whole Numbers Remember to Silence Your Cell Phone and Put It In Your Bag!
1.  We have studied groups, which is an algebraic structure equipped with one binary operation. Now we shall study rings which is an algebraic structure.
Math 3121 Abstract Algebra I
1.  Detailed Study of groups is a fundamental concept in the study of abstract algebra. To define the notion of groups,we require the concept of binary.
Congruence class arithmetic. Definitions: a ≡ b mod m iff a mod m = b mod m. a  [b] iff a ≡ b mod m.
Chapter II. THE INTEGERS
Congruence of Integers
Congruence Classes Z n = {[0] n, [1] n, [2] n, …, [n - 1] n } = the set of congruence classes modulo n.
Fall 2002CMSC Discrete Structures1 Let us get into… Number Theory.
BY MISS FARAH ADIBAH ADNAN IMK
The Integers and Division
Mathematics of Cryptography Part I: Modular Arithmetic, Congruence,
Number Theory and Cryptography
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 3 (Part 2): The Fundamentals: Algorithms, the.
9/2/2015Discrete Structures1 Let us get into… Number Theory.
Mathematics of Cryptography Part I: Modular Arithmetic
February 24, 2015Applied Discrete Mathematics Week 4: Number Theory 1 Modular Arithmetic Let a be an integer and m be a positive integer. We denote by.
Prep Math Competition, Lec. 1Peter Burkhardt1 Number Theory Lecture 1 Divisibility and Modular Arithmetic (Congruences)
CompSci 102 Discrete Math for Computer Science February 16, 2012 Prof. Rodger.
Copyright © Curt Hill Divisibility and Modular Arithmetic A Topic in Number Theory.
Chapter 3 Elementary Number Theory and Methods of Proof.
Chapter The Integers and Division Division
Number Theory 이재원 School of Information Technology Sungshin W. University.
Chapter 2 (Part 1): The Fundamentals: Algorithms, the Integers & Matrices The Integers and Division (Section 2.4)
Elements of Coding and Encryption 1. Encryption In the modern word, it is crucial that the information is transmitted safely. For example, Internet purchases,
Foundations of Discrete Mathematics Chapter 4 By Dr. Dalia M. Gil, Ph.D.
Chapter 4 With Question/Answer Animations. Section 4.1.
Chinese Remainder Theorem. How many people What is x? Divided into 4s: remainder 3 x ≡ 3 (mod 4) Divided into 5s: remainder 4 x ≡ 4 (mod 5) Chinese Remainder.
Cryptography and Network Security Chapter 4. Introduction  will now introduce finite fields  of increasing importance in cryptography AES, Elliptic.
Module #9 – Number Theory 1/5/ Algorithms, The Integers and Matrices.
Ref: Pfleeger96, Ch.31 Properties of Arithmetic Reference: Pfleeger, Charles P., Security in Computing, 2nd Edition, Prentice Hall, 1996.
Foundations of Computing I CSE 311 Fall Review: Division Theorem Let a be an integer and d a positive integer. Then there are unique integers q.
Discrete Mathematics 4. NUMBER THEORY Lecture 7 Dr.-Ing. Erwin Sitompul
Chapter 13 Mathematic Structures 13.1 Modular Arithmetic Definition 1 (modulo). Let a be an integer and m be a positive integer. We denoted by a mod m.
1 Discrete Structures – CNS2300 Text Discrete Mathematics and Its Applications Kenneth H. Rosen (5 th Edition) Chapter 2 The Fundamentals: Algorithms,
Ch04-Number Theory and Cryptography 1. Introduction to Number Theory Number theory is about integers and their properties. We will start with the basic.
Chapter 4 With Question/Answer Animations 1. Chapter Motivation Number theory is the part of mathematics devoted to the study of the integers and their.
Number Theory Lecture 1 Text book: Discrete Mathematics and its Applications, 7 th Edition.
Chapter 3 The Fundamentals: Algorithms, the integers, and matrices Section 3.4: The integers and division Number theory: the part of mathematics involving.
Number Theory. Introduction to Number Theory Number theory is about integers and their properties. We will start with the basic principles of divisibility,
Relations Chapter 9 Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
CS 210 Discrete Mathematics The Integers and Division (Section 3.4)
CSE15 Discrete Mathematics 03/15/17
Congruence class arithmetic
Advanced Algorithms Analysis and Design
Integers and Division Section 3.4.
CMSC Discrete Structures
Number Theory and Cryptography
MATH301- DISCRETE MATHEMATICS Copyright © Nahid Sultana Dr. Nahid Sultana Chapter 4: Number Theory and Cryptography.
Applied Discrete Mathematics Week 4: Number Theory
Modular Arithmetic and Change of Base
CMSC 203, Section 0401 Discrete Structures Fall 2004 Matt Gaston
Section 10.3 Modular Arithmetic
Divisibility and Modular Arithmetic
Applied Discrete Mathematics Week 10: Introduction to Counting
Number Theory.
Lecture 3 Strings and Things (Section 1.1)
Section 9.3 Modular Arithmetic.
Presentation transcript:

Divisibility and Modular Arithmetic Section 4.1

Division Definition: If a and b are integers with a ≠ 0, then a divides b if there exists an integer c such that b = ac. The notation a | b denotes that a divides b. If a | b, then b/a is an integer. If a does not divide b, we write a ∤ b. Example: Determine whether 3 | 7 and whether 3 | 12.

Properties of Divisibility Theorem: Let a, b, and c be integers, where a ≠0. If a | b and a | c, then a | (b + c); If a | b, then a | bc for all integers c; If a | b and b | c, then a | c. Proof: (i) Suppose a | b and a | c, then it follows that there are integers s and t with b = as and c = at. Hence, b + c = as + at = a(s + t). Hence, a | (b + c) Corollary: If a, b, and c be integers, where a ≠0, such that a | b and a | c, then a | mb + nc whenever m and n are integers.

Definitions of Functions div and mod Division Algorithm When an integer is divided by a positive integer, there is a quotient and a remainder. This is traditionally called the “Division Algorithm,” but is really a theorem. Division Algorithm: If a is an integer and d a positive integer, then there are unique integers q and r, with 0 ≤ r < d, such that a = dq + r d is called the divisor. a is called the dividend. q is called the quotient. r is called the remainder. Examples: What are the quotient and remainder when 101 is divided by 11? Solution: The quotient when 101 is divided by 11 is 9 = 101 div 11, and the remainder is 2 = 101 mod 11. What are the quotient and remainder when −11 is divided by 3? Solution: The quotient when −11 is divided by 3 is −4 = −11 div 3, and the remainder is 1 = −11 mod 3. Definitions of Functions div and mod q = a div d r = a mod d

Congruence Relation Definition: If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a–b. The notation a ≡ b (mod m) says that a is congruent to b modulo m. Two integers are congruent mod m if and only if they have the same remainder when divided by m. Example: Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6. Solution: 17 ≡ 5 (mod 6) because 6 divides 17 − 5 = 12. 24 ≢ 14 (mod 6) since 6 divides 24 − 14 = 10 is not divisible by 6.

More on Congruences Theorem: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km. Proof: If a ≡ b (mod m), then (by the definition of congruence) m | a – b. Hence, there is an integer k such that a – b = km and equivalently a = b + km. Conversely, if there is an integer k such that a = b + km, then km = a – b. Hence, m | a – b and a ≡ b (mod m).

Congruences of Sums and Products Theorem: Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d (mod m) and ac ≡ bd (mod m) Proof: (good exercise) Because a ≡ b (mod m) and c ≡ d (mod m), by previous theorem there are integers s and t with b = a + sm and d = c + tm. Therefore, b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and b d = (a + sm) (c + tm) = ac + m(at + cs + stm). Hence, a + c ≡ b + d (mod m) and ac ≡ bd (mod m). Example: Because 7 ≡ 2 (mod 5) and 11 ≡ 1 (mod 5) , it follows from that 18 = 7 + 11 ≡ 2 + 1 = 3 (mod 5) 77 = (7)11 ≡ (2)1 = 2 (mod 5)

Arithmetic Modulo m Definitions: Let Zm be the set of nonnegative integers less than m: {0,1, …., m−1} The operation +m is defined as a +m b = (a + b) mod m. This is addition modulo m. The operation ∙m is defined as a ∙m b = (ab) mod m. This is multiplication modulo m. Using these operations is said to be doing arithmetic modulo m. Example: Find 7 +11 9 and 7 ∙11 9. Solution: Using the definitions above: 7 +11 9 = (7 + 9) mod 11 = 16 mod 11 = 5 7 ∙11 9 = (7 ∙ 9) mod 11 = 63 mod 11 = 8

Arithmetic Modulo m The operations +m and ∙m satisfy many of the same properties as ordinary addition and multiplication. Closure: If a and b belong to Zm , then a +m b and a ∙m b belong to Zm . Associativity: If a, b, and c belong to Zm , then (a +m b) +m c = a +m (b +m c) and (a ∙m b) ∙m c = a ∙m (b ∙m c). Commutativity: If a and b belong to Zm , then a +m b = b +m a and a ∙m b = b ∙m a. Identity elements: The elements 0 and 1 are identity elements for addition and multiplication modulo m, respectively. If a belongs to Zm , then a +m 0 = a and a ∙m 1 = a. continued →

Arithmetic Modulo m Additive inverses: If a≠ 0 belongs to Zm , then m− a is the additive inverse of a modulo m and 0 is its own additive inverse. a +m (m− a ) = 0 and 0 +m 0 = 0 Distributivity: If a, b, and c belong to Zm , then a ∙m (b +m c) = (a ∙m b) +m (a ∙m c) and (a +m b) ∙m c = (a ∙m c) +m (b ∙m c). Multiplicatative inverses have not been included since they do not always exist. For example, there is no multiplicative inverse of 2 modulo 6. (extra) Using the terminology of abstract algebra, Zm with +m is a commutative group and Zm with +m and ∙m is a commutative ring.