EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, email url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.

Slides:



Advertisements
Similar presentations
EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
Advertisements

EE359 – Lecture 9 Outline Announcements: Project proposals due this Friday at 5pm; create website Midterm date: Thurs Nov. 7, 5:30-7:30 or 6-8pm? Practice.
EE359 – Lecture 7 Outline Multipath Intensity Profile Doppler Power Spectrum Shannon Capacity Capacity of Flat-Fading Channels Fading Statistics Known.
Semi-Blind Equalization for OFDM using Space-Time Block Coding and Channel Shortening Alvin Leung Yang You EE381K-12 March 04, 2008.
EE359 – Lecture 16 Outline Announcements: HW due Friday MT announcements Rest of term announcements MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver.
EE359 – Lecture 16 Outline Announcements: HW due Thurs., last HW will be posted Thurs., due 12/4 (no late HWs) Friday makeup lecture 9:30-10:45 in Gates.
EE359 – Lecture 16 Outline MIMO Beamforming MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver Design Maximum-Likelihood, Decision Feedback, Sphere Decoder.
EE360: Lecture 9 Outline Multiuser OFDM Announcements: Project abstract due next Friday Multiuser OFDM Adaptive Techniques “OFDM with adaptive subcarrier,
EE360: Lecture 6 Outline MAC Channel Capacity in AWGN
Wireless Communications: Lecture 2 Professor Andrea Goldsmith
Coding and Information Theory Lecture 15: Space Time Coding and MIMO:
Capacity of multi-antenna Gaussian Channels, I. E. Telatar By: Imad Jabbour MIT May 11, 2006.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Equal.
Final Announcements Final Friday, 12/13, 12:15-3:15, here (Gates B3) l Covers Chapters , , 12, (plus earlier chapters covered.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Transmit.
EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Combining Techniques Maximal Ratio Combining MGF Approach.
MULTIPLE INPUT MULTIPLE OUTPUT SYSTEMS (MIMO)
Wireless Communication Elec 534 Set IV October 23, 2007
Course Summary Signal Propagation and Channel Models
8: MIMO II: Capacity and Multiplexing Architectures Fundamentals of Wireless Communication, Tse&Viswanath 1 8. MIMO II: Capacity and Multiplexing Architectures.
EE359 – Lecture 18 Outline Review of Last Lecture Multicarrier Modulation Overlapping Substreams OFDM FFT Implementation OFDM Design Issues.
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 11 Feb. 19 th, 2014.
EE359 – Lecture 15 Outline Introduction to MIMO Communications MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing.
Course Summary Signal Propagation and Channel Models Modulation and Performance Metrics Impact of Channel on Performance Fundamental Capacity Limits Flat.
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
EE359 – Lecture 14 Outline Announcements: HW posted tomorrow, due next Thursday Will send project feedback this week Practical Issues in Adaptive Modulation.
EE359 – Lecture 13 Outline Adaptive MQAM: optimal power and rate Finite Constellation Sets Practical Constraints Update rate Estimation error Estimation.
EE359 – Lecture 12 Outline Combining Techniques
5: Capacity of Wireless Channels Fundamentals of Wireless Communication, Tse&Viswanath 1 5. Capacity of Wireless Channels.
7: MIMO I: Spatial Multiplexing and Channel Modeling Fundamentals of Wireless Communication, Tse&Viswanath 1 7. MIMO I: Spatial Multiplexing and Channel.
EE359 – Lecture 15 Outline Announcements: HW posted, due Friday MT exam grading done; l Can pick up from Julia or during TA discussion section tomorrow.
EE 359: Wireless Communications Announcements and Course Summary
Course Summary Signal Propagation and Channel Models Modulation and Performance Metrics Impact of Channel on Performance Fundamental Capacity Limits Flat.
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 11 Outline Announcements Class project links posted (please check). Will have comments back this week. Midterm announcements No HW next.
EE359 – Lecture 18 Outline Announcements last HW posted, due Thurs 12/4 at 5pm (no late HWs) Last regular class lecture, Monday 12/1, 9:30-10:45 (as usual)
EE359 – Lecture 17 Outline Review of Last Lecture MIMO Decision-Feedback Receivers MIMO Sphere Decoders Other MIMO Design Issues Introduction to ISI Countermeasures.
Channel Capacity.
Multiple Antennas.
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Introduction to adaptive modulation Variable-rate.
A REVIEW: PERFORMANCE ANALYSIS OF MIMO-WiMAX AKANKSHA SHARMA, LAVISH KANSAL PRESENTED BY:- AKANKSHA SHARMA Lovely Professional University.
EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
EE 359: Wireless Communications Announcements and Course Summary
EE359 – Lecture 8 Outline Capacity of Flat-Fading Channels
EE359 – Lecture 11 Outline Doppler and ISI Performance Effects
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
EE359 – Lecture 12 Outline Maximal Ratio Combining
EE359 – Lecture 11 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Midterm Review Midterm only covers material from lectures and HWs
Space Time Coding and Channel Estimation
EE359 – Lecture 12 Outline Announcements Transmit Diversity
Fading multipath radio channels
EE359 – Lecture 9 Outline Announcements: Linear Modulation Review
EE359 – Lecture 17 Outline Announcements Review of Last Lecture
EE359 – Lecture 11 Outline Introduction to Diversity
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 7 Outline Announcements: Multipath Intensity Profile
EE359 – Lecture 10 Outline Announcements: MGF approach for average Ps
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 14 Outline Announcements:
EE359 – Lecture 7 Outline Announcements: Shannon Capacity
EE359 – Lecture 8 Outline Announcements Capacity of Fading channels
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 18 Outline Announcements Spread Spectrum
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 7 Outline Shannon Capacity
Presentation transcript:

EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus points Sensor networks laboratory course next quarter MIMO TX Precoding/RX Shaping MIMO Channel Capacity MIMO Beamforming (Diversity) MIMO Diversity/Multiplexing Tradeoffs Introduction to ISI Countermeasures

Review of Last Lecture Practical Issues in Adaptive Modulation Update rate based on AFRD in Markov fading model: At f D =80 Hz and 100 Kbps, adapt every Ts. Estimation error/delay in adaptive MQAM lead to irreducible errors floors: must estimate and feedback in t<<T c MIMO Systems Channel decomposes into R H independent channels R H -fold capacity increase over SISO system and reduced complexity Can also use antennas for diversity (beamforming) l Leads to capacity versus diversity tradeoff in MIMO y=Hx+n

MIMO Decomposition Decompose channel through transmit precoding (x=Vx) and receiver shaping (y=U H y) Leads to R H  min(M t,M r ) independent channels with gain  i (i th singular value of H) and AWGN Independent channels lead to simple capacity analysis and modulation/demodulation design H=U  V H y=Hx+n y=  x+n ~~ y i =   x+n i ~ ~~ ~ ~ ~

Capacity of MIMO Systems Depends on what is known at TX and RX and if channel is static or fading For static channel with perfect CSI at TX and RX, power water-filling over space is optimal: In fading waterfill over space (based on short-term power constraint) or space-time (long-term constraint) Without transmitter channel knowledge, capacity metric is based on an outage probability P out is the probability that the channel capacity given the channel realization is below the transmission rate.

Beamforming Scalar codes with transmit precoding Transforms system into a SISO system with diversity. Array and diversity gain Greatly simplifies encoding and decoding. Channel indicates the best direction to beamform Need “sufficient” knowledge for optimality of beamforming y=u H Hvx+u H n

Optimality of Beamforming Mean Information Covariance Information

Diversity vs. Multiplexing Use antennas for multiplexing or diversity Diversity/Multiplexing tradeoffs (Zheng/Tse) Error Prone Low P e

ISI Countermeasures Equalization Signal processing at receiver to eliminate ISI Multicarrier Modulation Break data stream into narrowband substreams, so each subchannel experiences narrowband fading Spread spectrum Superimpose a wideband spreading sequence on top of modulated data, allows individual multipath components to be resolved and removed/combined.

Main Points Multiple antennas at both TX and RX greatly enhance capacity and reduce complexity. With transmitter and receiver CSI, capacity of MIMO channel uses water-filling of power in space/time Leads to min(M t,M r ) capacity increase Same capacity increase without transmitter CSI Without transmitter CSI, need outage as a capacity metric Multiple antennas can also be used for diversity via beamforming – this can be optimal Fundamental diversity/multiplexing tradeoff in MIMO