T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 T. Hellsten 1, T. Bergkvist 1, T.Johnson 1, M. Laxåback 1 and L.-G. Eriksson 2 1 Euratom-VR.

Slides:



Advertisements
Similar presentations
Magnetic Turbulence in MRX (for discussions on a possible cross-cutting theme to relate turbulence, reconnection, and particle heating) PFC Planning Meeting.
Advertisements

Ion-Induced Instability of Diocotron Modes In Magnetized Electron Columns Andrey Kabantsev University of California at San Diego Physics Department Nonneutral.
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Lecture Series in Energetic Particle Physics of Fusion Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543,
A Kinetic-Fluid Model for Studying Thermal and Fast Particle Kinetic Effects on MHD Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma.
Electron Acceleration in the Van Allen Radiation Belts by Fast Magnetosonic Waves Richard B. Horne 1 R. M. Thorne 2, S. A. Glauert 1, N. P. Meredith 1.
6 th ITPA MHD Topical Group Meeting combined with W60 IEA Workshop on Burning Plasmas Session II MHD Stability and Fast Particle Confinement General scope.
Cyclic MHD Instabilities Hartmut Zohm MPI für Plasmaphysik, EURATOM Association Seminar talk at the ‚Advanced Course‘ of EU PhD Network, Garching, September.
Lecture Series in Energetic Particle Physics of Fusion Plasmas
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Alfvén-cyclotron wave mode structure: linear and nonlinear behavior J. A. Araneda 1, H. Astudillo 1, and E. Marsch 2 1 Departamento de Física, Universidad.
Modeling Generation and Nonlinear Evolution of Plasma Turbulence for Radiation Belt Remediation Center for Space Science & Engineering Research Virginia.
Fast ion effects on fishbones and n=1 kinks in JET simulated by a non-perturbative NOVA-KN code TH/5-2Rb N.N. Gorelenkov 1), C.Z.Cheng 1), V.G. Kiptily.
F. Nabais - Vilamoura - November 2004 Internal kink mode stability in the presence of ICRH driven fast ions populations F. Nabais, D. Borba, M. Mantsinen,
Solar Flare Particle Heating via low-beta Reconnection Dietmar Krauss-Varban & Brian T. Welsch Space Sciences Laboratory UC Berkeley Reconnection Workshop.
TH/3-1Ra Nonperturbative Effects of Energetic Ions on Alfvén Eigenmodes by Y. Todo et al. EX/5-4Rb Configuration Dependence of Energetic Ion Driven Alfven.
Finite Temperature Effects on VLF-Induced Precipitation Praj Kulkarni, U.S. Inan and T. F. Bell MURI Review February 18, 2009.
Examples of using Langevin equation to solve FP equation.
1 Phase Space Instability with Frequency Sweeping H. L. Berk and D. Yu. Eremin Institute for Fusion Studies Presented at IAEA Workshop Oct
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Fast imaging of global eigenmodes in the H-1 heliac ABSTRACT We report a study of coherent plasma instabilities in the H-1 plasma using a synchronous gated.
T. Hellsten IEA Burning Plasma Workshop, July 2005 Tarragona Spain Integrated Modelling of ICRH and AE Dynamics T. Hellsten, T. Bergkvist, T. Johnson and.
Computer simulations of fast frequency sweeping mode in JT-60U and fishbone instability Y. Todo (NIFS) Y. Shiozaki (Graduate Univ. Advanced Studies) K.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
Wave-Particle Interaction in Collisionless Plasmas: Resonance and Trapping Zhihong Lin Department of Physics & Astronomy University of California, Irvine.
Fabien Jaulmes CPP-HT, DIFFER, Netherlands
Nonlinear VLF Wave Physics in the Radiation Belts Chris Crabtree Guru Ganguli Erik Tejero Naval Research Laboratory Leonid Rudakov Icarus Research Inc.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
J A Snipes, 6 th ITPA MHD Topical Group Meeting, Tarragona, Spain 4 – 6 July 2005 TAE Damping Rates on Alcator C-Mod Compared with Nova-K J A Snipes *,
Hybrid Simulations of Energetic Particle-driven Instabilities in Toroidal Plasmas Guo-Yong Fu In collaboration with J. Breslau, J. Chen, E. Fredrickson,
TH/7-2 Radial Localization of Alfven Eigenmodes and Zonal Field Generation Z. Lin University of California, Irvine Fusion Simulation Center, Peking University.
The Role of Damping in Stable and Unstable Alfvén Eigenmodes S. D. Pinches 1, A. Könies 2, Ph. Lauber 1 H.L.Berk 3, S.E.Sharapov 4 and M.Gryaznavich 4.
ACKNOWLEDGMENTS This research was supported by the National Science Foundation of China (NSFC) under grants , , , the Specialized.
Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2.
Excitation of ion temperature gradient and trapped electron modes in HL-2A tokamak The 3 th Annual Workshop on Fusion Simulation and Theory, Hefei, March.
HAGIS Code Lynton Appel … on behalf of Simon Pinches and the HAGIS users CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority.
Chalmers University of Technology Szczecin, 23 March 2006 Meeting with Dr. B. Green Dr. B. Green (Euratom) and Prof. A. Gałkowski (Association Euratom-IPPLM)
Transition from ” True” Modes to Quasimodes for Radially Extended Perturbations Page 1 Nonlinear Consequences of Energetic Particle Instabilities Boris.
PLASMA HEATING AND HOT ION SUSTAINING IN MIRROR BASED HYBRIDS
RADIO-FREQUENCY HEATING IN STRAIGHT FIELD LINE MIRROR NEUTRON SOURCE V.E.Moiseenko 1,2, O.Ågren 2, K.Noack 2 1 Kharkiv Institute of Physics and Technology,
Lecture Series in Energetic Particle Physics of Fusion Plasmas
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
Current Drive for FIRE AT-Mode T.K. Mau University of California, San Diego Workshop on Physics Issues for FIRE May 1-3, 2000 Princeton Plasma Physics.
Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 8. Heating and current drive Neutral beam heating and current drive,... to be continued.
M. Ichimura, Y. Yamaguchi, R. Ikezoe, Y. Imai, T. Murakami,
11 Association Euratom-Cea The PION code L.-G. Eriksson Association EURATOM-CEA, CEA/DSM/IRFM, CEA-Cadarache, St. Paul lez Durance, France T. Hellsten.
(National Institute for Fusion Science, Japan)
Electron inertial effects & particle acceleration at magnetic X-points Presented by K G McClements 1 Other contributors: A Thyagaraja 1, B Hamilton 2,
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Hybrid MHD-Gyrokinetic Simulations for Fusion Reseach G. Vlad, S. Briguglio, G. Fogaccia Associazione EURATOM-ENEA, Frascati, (Rome) Italy Introduction.
Lecture Series in Energetic Particle Physics of Fusion Plasmas Guoyong Fu Princeton Plasma Physics Laboratory Princeton University Princeton, NJ 08543,
1 A Proposal for a SWIM Slow-MHD 3D Coupled Calculation of the Sawtooth Cycle in the Presence of Energetic Particles Josh Breslau Guo-Yong Fu S. C. Jardin.
Alfven Waves in Toroidal Plasmas
Simulations of NBI-driven Global Alfven Eigenmodes in NSTX E. V. Belova, N. N. Gorelenkov, C. Z. Cheng (PPPL) NSTX Results Forum, PPPL July 2006 Motivation:
Relativistic MHD Simulations of jets Relativistic MHD Simulations of jets Abstract We have performed 3D RMHD simulations to investigate the stability and.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Kinetic-Fluid Model for Modeling Fast Ion Driven Instabilities C. Z. Cheng, N. Gorelenkov and E. Belova Princeton Plasma Physics Laboratory Princeton University.
Effect of Energetic-Ion/Bulk-Plasma- driven MHD Instabilities on Energetic Ion Loss in the Large Helical Device Kunihiro OGAWA, Mitsutaka ISOBE, Kazuo.
Nonlinear plasma-wave interactions in ion cyclotron range of frequency N Xiang, C. Y Gan, J. L. Chen, D. Zhou Institute of plasma phsycis, CAS, Hefei J.
TH/7-1Multi-phase Simulation of Alfvén Eigenmodes and Fast Ion Distribution Flattening in DIII-D Experiment Y. Todo (NIFS, SOKENDAI) M. A. Van Zeeland.
Energetic ion excited long-lasting “sword” modes in tokamak plasmas with low magnetic shear Speaker:RuiBin Zhang Advisor:Xiaogang Wang School of Physics,
54 th APS-DPP Annual Meeting, October 29 - November 2, 2012, Providence, RI Study of ICRH and Ion Confinement in the HSX Stellarator K. M. Likin, S. Murakami.
AGILE as particle monitor: an update
M. Fitzgerald, S.E. Sharapov, P. Rodrigues2, D. Borba2
8th IAEA Technical Meeting on
Heavy-Ion Acceleration and Self-Generated Waves in Coronal Shocks
Stabilization of m/n=1/1 fishbone by ECRH
Simulations of energetic particle driven instabilities and fast particle redistribution in EAST tokamak Fishbone simulation by M3D-K: The simulation results.
20th IAEA Fusion Energy Conference,
Presentation transcript:

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 T. Hellsten 1, T. Bergkvist 1, T.Johnson 1, M. Laxåback 1 and L.-G. Eriksson 2 1 Euratom-VR association, Alfvén Laboratory, Royal Institute of Technology, SE Stockholm, Sweden 2 Association Euratom-CEA, F St. Paul lez Durance, France Self-consistent calculations of the distribution function and wave field during ICRF heating and global Alfven wave excitation

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Alfvén eigenmodes in JET during ICRH with +90° and -90° phasing of the antennae +90°-90° L.-G. Eriksson, et al Phys Rev. Lett 81 (1998) 1231 M. Mantsinen et al Phys. Rev. Lett. 84(2002).

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Evolution of drift orbits during ICRH, the effect of that  P  =n  /   E Interactions with waves propagating parallel to plasma current anti-parallel to plasma current 0.5MeV 1.0MeV 2.0MeV 0.5MeV 1.0MeV 2.0MeV T. Hellsten et al Phys. Rev. Lett. 1995

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego o ICRH phasing: trapped 3 He ions displaced outwards.  emission from turning points of trapped ions at cyclotron resonance +90 o ICRH phasing: trapped 3 He orbits pinched, then detrapped to co-current wide passing orbits at the low field side of the center Tomographic reconstruction of the  - emission profiles from JET Tomographic reconstruction by C. Ingesson V. G. Kiptily et al Nucl. Fusion 42(2001)999

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Simulation of Alfvén wave excitation by thermonuclear  -particles with ICRH. Energy distribution of ICRH and alpha particles similar. Details of the distribution function different not only damping. Heating with +90 o and -90 o in JET result in different excitations. ICRH de-correlate interactions with Alfvén waves Modelling of Alfvén wave excitation requires detailed calculation of the distribution function including ICRH and interactions with Alfvén modes.

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Wave particle interaction Resonance condition ICRH contribution

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 MHD and ICRH represent a one dimensional diffusion processes in the invariant space (E, P ,  ) MHD ICRH

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Wave-particle interactions at guiding centre drift frequencies will displace the orbit invariants along the curve and for cyclotron interactions along the curve

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Characteristics for ICRH

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Monte Carlo code FIDO for calculating the distribution function J. Carlson et al, “Theory of Fusion Plasmas” Varenna 1996, L.-G. Eriksson and P. Helander Phys. Plasmas (1994), T. Bergkvist et al 15th Topical Conf. On RF-power in Plasmas, Wyoming 2003.

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Trajectories of MHD modes and ICRH E PP  ICRH MHD Resonance

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Different behaviour of wave- particle interactions: Low amplitude slow diffusion High amplitude fast diffusion High amplitude non-linear bouncing

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Low amplitude slow diffusion MHD increments for n interactions during one decorrelation time  decorr, n  b =  decorr

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 High amplitude non-linear bouncing Bouncing frequency Excursions along the trajectory in phase space Assume the orbit to be randomly displaced along the MHD trajectory in the phase space in the interval |E-E res |<  E after an decorrelation time

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Amplitude of Alfvén eigenmode

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 SELFO -code Define equilibrium, antenna spectrum, power, type of MHD mode etc. Calculate wave field for ICRH (LION code 1 ) and amplitude of Alfvén eigenmode Calculate changes in orbit invariants by collisions, ICRH and MHD with the FIDO code Calculate dielectric tensors from distribution functions Output 1 LION code L. Villard et al, Computer Physics Reports 4(1986)95 and Nucl. Fusion, 35(1995)1173

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 SELFO -code 1 LION code L. Villard et al, Computer Physics Reports 4(1986)95 and Nucl. Fusion, 35(1995)1173 Define equilibrium, antenna spectrum, power, type of MHD mode etc. Calculate wave field for ICRH (LION code 1 ) and amplitude of Alfvén eigenmode Calculate changes in orbit invariants by collisions, ICRH and MHD with the FIDO code Define equilibrium, antenna spectrum, power, type of MHD mode etc. Output

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Simulation of distributionn function for different antenna phasing +90°-90° For +90° high energy de-trapped ions with non-standard orbits are formed. For -90° the high energy ions have lower energy and are trapped with the turning point close to the magnetic axis

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Comparison of the gamma emissitivity in the mid-plane z=0 between tomographic reconstructions (full line) dashed region (confidence interval) and the density of high-energy 3 He ions calculated with the SELFO code (boxes ) +90-phasing location of the excited TAE modes indicated -90-phasing SELFO code modelling by T. Johnson

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Initial energy given to the mode versus mode frequency

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Evolution of the mode amplitude

T. Hellsten IAEA TM Meeting on Energetic Particles, San Diego 2003 Conclusion The details of the the distribution function is important for the stability and growth of Alfvén eigenmodes. The decorrelation by RF-heating important for the non-linear growth of the Alfvén eigenmodes. SELFO code has been extended to self-consistent include the MHD and ICRH interactions.