Mayer-Gürr et al.ESA Living Planet, Bergen 1 27.06.2008 Torsten Mayer-Gürr, Annette Eicker, Judith Schall Institute of Geodesy and Geoinformation University.

Slides:



Advertisements
Similar presentations
A Comparison of topographic effect by Newton’s integral and high degree spherical harmonic expansion – Preliminary Results YM Wang, S. Holmes, J Saleh,
Advertisements

Ocean circulation estimations using GOCE gravity field models M.H. Rio 1, S. Mulet 1, P. Knudsen 2, O.B. Andersen 2, S.L. Bruinsma 3, J.C. Marty 3, Ch.
ARCGICE WP 4.3 Recommendations for inclusion of GOCE data C.C.Tscherning & S.Laxon C.C.Tscherning, UCPH, S.Laxon, UCLA,
From TOPEX-POSEIDON to JASON Science Working Team Meeting GRACE Mission Status Arles, France November 18-21, 2003 Byron D. Tapley (Principal Investigator)
GRACE GRAVITY FIELD SOLUTIONS USING THE DIFFERENTIAL GRAVIMETRY APPROACH M. Weigelt, W. Keller.
National report of LITHUANIA THE 4th BALTIC SURVEYORS FORUM, 2013, Ventspils, LATVIA Eimuntas Parseliunas Geodetic Institute of Vilnius Technical University.
Satellite geodesy. Basic concepts. I1.1a = geocentric latitude φ = geodetic latitude r = radial distance, h = ellipsoidal height a = semi-major axis, b.
ARCGICE WP 2.2 ERROR ESTIMATION OF NEW GEOID C.C.Tscherning, University of Copenhagen,
The Four Candidate Earth Explorer Core Missions Consultative Workshop October 1999, Granada, Spain, Revised by CCT GOCE S 43 Science and.
ARCGICE WP 2.1 Leader: DSPC Make new geoid of afrctic region based on GRACE C.C.Tscherning, University of Copenhagen,
COMBINED MODELING OF THE EARTH’S GRAVITY FIELD FROM GOCE AND GRACE SATELLITE OBSERVATIONS Robert Tenzer 1, Pavel Ditmar 2, Xianglin Liu 2, Philip Moore.
CHAMP Satellite Gravity Field Determination Satellite geodesy Eva Howe January
ARCGICE WP 1.4 ERROR ESTIMATES IN SPATIAL AND SPECTRAL DOMAINS C.C.Tscherning, University of Copenhagen,
ARCGICE WP 5.2 Plan for development of Atctic geoid using GOCE C.C.Tscherning, University of Copenhagen,
ARCGICE WP 5.1 Leader: UCL Synthesis report on benefit of combining data C.C.Tscherning, University of Copenhagen,
The Four Candidate Earth Explorer Core Missions Consultative Workshop October 1999, Granada, Spain, Revised by CCT GOCE S 1 Gravity Field.
Dynamic Planet 2005 Cairns, Australia August 2005
Use of G99SSS to evaluate the static gravity geopotential derived from the GRACE, CHAMP, and GOCE missions Daniel R. Roman and Dru A. Smith Session: GP52A-02Decade.
Geoid improvement over Alaska/Yukon area by GRACE and GOCE models X Li 1, JL Huang 2, YM Wang 3, M Véronneau 2, D Roman 3 1 ERT Inc USA 2 Geodetic Survey.
Institut für Erdmessung (IfE), Leibniz Universität Hannover, Germany Quality Assessment of GOCE Gradients Phillip Brieden, Jürgen Müller living planet.
1 Assessment of Geoid Models off Western Australia Using In-Situ Measurements X. Deng School of Engineering, The University of Newcastle, Australia R.
ESA Living Planet Symposium, Bergen, T. Gruber, C. Ackermann, T. Fecher, M. Heinze Institut für Astronomische und Physikalische Geodäsie (IAPG)
“ New Ocean Circulation Patterns from Combined Drifter and Satellite Data ” Peter Niiler Scripps Institution of Oceanography with original material from.
1 Approximate decorrelation and non-isotropic smoothing of time-variable GRACE gravity field models Jürgen Kusche, Roland Schmidt with input from Susanna.
GOCE ITALY scientific tasks and first results Fernando Sansò and the GOCE Italy group.
GOCE OBSERVATIONS FOR DETECTING UNKNOWN TECTONIC FEATURES BRAITENBERG C. (1), MARIANI P. (1), REGUZZONI M. (2), USSAMI N. (3) (1)Department of Geosciences,
1 Average time-variable gravity from GPS orbits of recent geodetic satellites VIII Hotine-Marussi Symposium, Rome, Italy, 17–21 June 2013 Aleš Bezděk 1.
Improved Hybrid Geoid Modeling and the FY 2000 Geoid Models Dr. Daniel R. Roman January 16, : :30 Conference Room 9836.
C.C.Tscherning, University of Copenhagen, Denmark. Developments in the implementation and use of Least-Squares Collocation. IAG Scientific Assembly, Potsdam,
Water storage variations from time-variable gravity data Andreas Güntner Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences Section.
Data Requirements for a 1-cm Accurate Geoid
EGU General Assembly 2011, 3 rd – 8 th April 2011, Vienna, Austria EGU EIGEN-6 A new combined global gravity field model including GOCE data from.
Spectral characteristics of the Hellenic vertical network - Validation over Central and Northern Greece using GOCE/GRACE global geopotential models Vassilios.
Effect of High Resolution Altimetric Gravity Anomalies on the North America Geoid Computations Yan M. Wang and D. Roman National Geodetic Survey NOAA Montreal,
OSTST March, Hobart, Tasmania Ocean Mean Dynamic Topography from altimetry and GRACE: Toward a realistic estimation of the error field Marie-Helene.
OSTST Meeting, Hobart, Australia, March 12-15, 2007 EIGEN-5 activities in GFZ and GRGS R. Biancale, J.-M. Lemoine, S. Bruinsma, S. Loyer* CNES/GRGS Toulouse,
GRACE Science Team Meeting October 15-17, 2007 Potsdam Germany Alternative Gravity Field Representations: Solutions, Characteristics, and Issues Michael.
Regional Enhancement of the Mean Dynamic Topography using GOCE Gravity Gradients Matija Herceg 1 and Per Knudsen 1 1 DTU Space, National Space Institute,
International Symposium on Gravity, Geoid and Height Systems GGHS 2012, Venice, Italy 1 GOCE data for local geoid enhancement Matija Herceg Per Knudsen.
Full Resolution Geoid from GOCE Gradients for Ocean Modeling Matija Herceg & Per Knudsen Department of Geodesy DTU Space living planet symposium 28 June.
C.C.Tscherning, Niels Bohr Institute, University of Copenhagen. Improvement of Least-Squares Collocation error estimates using local GOCE Tzz signal standard.
Lecture 7 – Gravity and Related Issues GISC February 2008.
A comparison of different geoid computation procedures in the US Rocky Mountains YM Wang 1, H Denker 2, J Saleh 3, XP Li 3, DR Roman 1, D Smith 1 1 National.
Investigation of the use of deflections of vertical measured by DIADEM camera in the GSVS11 Survey YM Wang 1, X Li 2, S Holmes 3, DR Roman 1, DA Smith.
ESA living planet symposium Bergen Combination of GRACE and GOCE in situ data for high resolution regional gravity field modeling M. Schmeer 1,
Improving Regional Geoid by optimal Combination of GRACE Gravity Model and Surface Gravity Data YM Wang, DR Roman and J Saleh National Geodetic Survey.
ESA Living Planet Symposium 28 June - 2 July 2010, Bergen, Norway A. Albertella, R. Rummel, R. Savcenko, W. Bosch, T. Janjic, J.Schroeter, T. Gruber, J.
1 NGA Mission - Data – Collaboration 2009 Workshop on Monitoring North American Geoid Change 21 Oct 2009 NGA Mission - Data – Collaboration 2009 Workshop.
4.Results (1)Potential coefficients comparisons Fig.3 FIR filtering(Passband:0.005~0.1HZ) Fig.4 Comparison with ESA’s models (filter passband:0.015~0.1HZ)
The OC in GOCE: A review The Gravity field and Steady-state Ocean Circulation Experiment Marie-Hélène RIO.
1 Least Square Modification of Stokes’ Formula vs. Remove- Compute-Restore Technique Lars E. Sjöberg Royal Institute of Technology Division of Geodesy.
Astronomical Institute University of Bern Astronomical Institute, University of Bern Swarm Gravity Field Results with the CMA Adrian Jäggi, Daniel Arnold,
An oceanographic assessment of the GOCE geoid models accuracy S. Mulet 1, M-H. Rio 1, P. Knudsen 2, F. Siegesmund 3, R. Bingham 4, O. Andersen 2, D. Stammer.
GOCE Gravity Field Models – Overview and Performance Analysis Th. Gruber*, R. Rummel* & High Level Processing Facility (HPF) Team *Institute of Astronomical.
Integration of Gravity Data Into a Seamless Transnational Height Model for North America Daniel Roman, Marc Véronneau, David Avalos, Xiaopeng Li, Simon.
How Do we Estimate Gravity Field? Terrestrial data –Measurements of surface gravity –Fit spherical harmonic coefficients Satellite data –Integrate equations.
D.N. Arabelos, M. Reguzzoni and C.C.Tscherning HPF Progress Meeting # 26, München, Feb , Global grids of gravity anomalies and vertical gravity.
GOCE geoids and derived Mean Dynamic Topography in the Arctic Ocean Ole B. Andersen & Per Knudsen. DTU Space – Copenhagen, Denmark.
ESA Living Planet Symposium, 29 June 2010, Bergen (Norway) GOCE data analysis: the space-wise approach and the space-wise approach and the first space-wise.
1 UPWARD CONTINUATION OF DOME-C AIRBORNE GRAVITY AND COMPARISON TO GOCE GRADIENTS AT ORBIT ALTITUDE IN ANTARCTICA Hasan Yildiz (1), Rene Forsberg (2),
Uncertainties of MDT and geostrophic currents estimated from GOCE and satellite altimetry: A case study in China's Marginal Seas Shuanggen Jin 1,2, Guiping.
(2) Norut, Tromsø, Norway Improved measurement of sea surface velocity from synthetic aperture radar Morten Wergeland Hansen.
An overview of spectral methods for the optimal processing of satellite altimetry and other data I.N. Tziavos1, M.G. Sideris2, G.S. Vergos1, V.N. Grigoriadis1,
Dynamic Planet 2005 Cairns, Australia August 2005
Adrian Jäggi 24th IUGG General Assembly, July, Perugia
Chairs: H. Sünkel, P. Visser
D. Rieser *, R. Pail, A. I. Sharov
Martin Pitoňák1, Michal Šprlák2 and Pavel Novák1
Daniel Rieser, Christian Pock, Torsten Mayer-Guerr
Geoid Enhancement in the Gulf Coast Region
Presentation transcript:

Mayer-Gürr et al.ESA Living Planet, Bergen Torsten Mayer-Gürr, Annette Eicker, Judith Schall Institute of Geodesy and Geoinformation University of Bonn Regional high resolution geoid and mean sea surface topography determination by a combination of GOCE, GRACE and altimetry data

Mayer-Gürr et al.ESA Living Planet, Bergen Overview ITG-Goce: Global GOCE SGG only solution ITG-Goce: Global GOCE SGG only solution Regional gravity field refinement GRACE + GOCE + Altimetry Regional gravity field refinement GRACE + GOCE + Altimetry Regional gravity field refinement GRACE + GOCE Regional gravity field refinement GRACE + GOCE

Mayer-Gürr et al.ESA Living Planet, Bergen GOCE data ITG-Goce (preliminary results) 1 month of data: - gradiometer data - star camera data - orbit data Computed with the short arc method: For each short arc (15 min) - full variance covariance - bias parameter for each SGG component - SST contribution is missing yet ITG-Goce (preliminary results) 1 month of data: - gradiometer data - star camera data - orbit data Computed with the short arc method: For each short arc (15 min) - full variance covariance - bias parameter for each SGG component - SST contribution is missing yet

Mayer-Gürr et al.ESA Living Planet, Bergen Median degree variances formal errors signal

Mayer-Gürr et al.ESA Living Planet, Bergen Median degree variances formal errors signal Difference ITG-Goce – EIGEN-05c Difference ITG-Goce – EIGEN-05c

Mayer-Gürr et al.ESA Living Planet, Bergen Median degree variances formal errors signal Difference ITG-Goce – EIGEN-05c Difference ITG-Goce – EIGEN-05c Difference ITG-Goce – ITG-Grace2010s Difference ITG-Goce – ITG-Grace2010s

Mayer-Gürr et al.ESA Living Planet, Bergen Regional gravity field recovery Global reference solution Regional refinement Spherical harmonics Spherical splines GOCE GRACE

Mayer-Gürr et al.ESA Living Planet, Bergen ITG-Grace2010s gravity anomalies

Mayer-Gürr et al.ESA Living Planet, Bergen ITG-Grace2010s gravity anomalies

Mayer-Gürr et al.ESA Living Planet, Bergen Representation of geoid heights The residual gravity field represented by a linear combination of localizing basis functions Harmonic Splines shape coefficients (expected spectral content)

Mayer-Gürr et al.ESA Living Planet, Bergen Observation equations This approach has similarities to: - regularization - combination with spectral weighting - least squares collocation This approach has similarities to: - regularization - combination with spectral weighting - least squares collocation normal equations GOCE GRACE field For the descripition of the theory see Eicker (2006)

Mayer-Gürr et al.ESA Living Planet, Bergen ITG-Grace2010s Results – gravity anomalies +

Mayer-Gürr et al.ESA Living Planet, Bergen Regional gravity field recovery Global reference solution Regional refinement Spherical harmonics Spherical splines GOCE GRACE

Mayer-Gürr et al.ESA Living Planet, Bergen Regional gravity field recovery Global reference solution Regional refinement Spherical harmonics Spherical splines GOCE GRACE Altimetry T/P, ERS 1/2,... Altimetry T/P, ERS 1/2,...

Mayer-Gürr et al.ESA Living Planet, Bergen Altimetry data (T/P, ERS 1/2, …) Altimetry Altimetry can improve the resolution of the GRACE/GOCE geoid. But: Altimeter satellites measures the sea surface height (SSH) and not the geoid height => Combined estimation of geoid and MDT Altimetry can improve the resolution of the GRACE/GOCE geoid. But: Altimeter satellites measures the sea surface height (SSH) and not the geoid height => Combined estimation of geoid and MDT MDT Geoid height SSH Sea surface Geoid Ellipsoid

Mayer-Gürr et al.ESA Living Planet, Bergen Altimetry data (T/P, ERS 1/2, …) Altimetry Observation equation MDT Geoid height SSH Sea surface Geoid Ellipsoid mean sea surface height geoid height mean dynamic topography =+ Localizing basis functions adapted to the spectral contenent of the residual gravity field Localizing basis functions adapted to the spectral contenent of the MDT

Mayer-Gürr et al.ESA Living Planet, Bergen Observation equations Complete observation equations Relative weighting of each set of observations by the variance component estimation method (VCE) (Koch & Kusche 2001) Altimetry GRACE field apriori (stochastical) information from MDT GOCE gravityMDT

Mayer-Gürr et al.ESA Living Planet, Bergen Results – gravity anomalies + + +

Mayer-Gürr et al.ESA Living Planet, Bergen Results – mean dynamic topography

Mayer-Gürr et al.ESA Living Planet, Bergen Results – gravity anomalies + + +

Mayer-Gürr et al.ESA Living Planet, Bergen Results – gravity anomalies + +

Mayer-Gürr et al.ESA Living Planet, Bergen EGM2008 Results – gravity anomalies + +

Mayer-Gürr et al.ESA Living Planet, Bergen EGM2008 Results – gravity anomalies + + Differences (RMS 8 mGal)

Mayer-Gürr et al.ESA Living Planet, Bergen Summary Refinenemt of GRACE + GOCE gravity field with Altimetry (T/P, ERS 1/2,...) leads to: - Regional high resolution Geoid - Estimation of the mean dynamic topography (MDT) Refinenemt of GRACE + GOCE gravity field with Altimetry (T/P, ERS 1/2,...) leads to: - Regional high resolution Geoid - Estimation of the mean dynamic topography (MDT) GeoidTopography -GOCE improves the gravity field compared to GRACE in the high degrees - Our first GOCE solution (ITG-Goce) fits better to ITG-Grace2010s than to EIGEN-05C in the medium degrees (n=90…150) -GOCE improves the gravity field compared to GRACE in the high degrees - Our first GOCE solution (ITG-Goce) fits better to ITG-Grace2010s than to EIGEN-05C in the medium degrees (n=90…150)