Tin loaded liquid scintillator for the double beta decay experiment Presented by H.J.Kim, KIMS Yonsei Univ, 10/23/2002 Workshop on Underground and Astropparticle.

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
XXIV WWND South Padre, TX, April 08 W. Bauer Slide 1 Double  Decays, DUSEL, and the Standard Model Wolfgang Bauer Michigan State University.
Double Beta Decay With 20-ton Metal Loaded Scintillators A Detector for DUSEL? Frank Calaprice Princeton University Aldo Ianni LNGS.
Potassium Geo-neutrino Detection Mark Chen Queen’s University Neutrino Geophysics, Honolulu, Hawaii December 15, 2005.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
Measurement of Kr background in the XMASS experiment ICRR master’s course in physics Keisuke Hieda 1.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Dark Matter Search with Direction sensitive Scintillator Ⅱ Department of Physics, School of Science The University of Tokyo Y. Shimizu, M. Minowa, Y. Inoue.
LENS-CAL I. Barabanov, V. Gurentsov, V. Kornoukhov Institute for Nuclear Research, Moscow and R. S. Raghavan, Virginia Tech LONU-LENS Blacksburg, Oct 15,
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Dark Matter Search with Direction Sensitive Scintillators NOON2004 Work Shop February 14, 2004, Odaiba H. Sekiya University of Tokyo M.Minowa, Y.Shimizu,
Prospect of  experiment in Korea Presented by H.J.Kim Yonsei Univ., 10/25/2003 KPS 2003 fall meeting Contents 1) Introduction of 2) Theory and Experiments.
The National Standard of the Radionuclides Activity Unit in Poland R. Broda, A. Chyliński, T. Radoszewski, K. Małetka, T. Terlikowska-Droździel Radioisotope.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Neutron Monitoring Detector in KIMS Jungwon Kwak Seoul National University 2003 October 25 th KPS meeting.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
9-June-2003NDM2003 M. Nomachi M. Nomachi OSAKA University and MOON collaboration MOON (Mo Observatory Of Neutrinos) for double beta decay Photo by
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
Ultra-low background HPGe detector at ChyeongPyung Underground Laboratory TaeYeon Kim and KIMS(Korea Invisible Mass Search) Collaboration. * Contents *
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
Internal background of CsI(Tl) crystal detectors for dark matter search Tae Yeon Kim Seoul National University For the KIMS Collaboration Seoul National.
Iwha Womans University 2005/04/22 Hyunsu Lee & Jungwon Kwak Current Limit of WIMP search with CsI(Tl) crystal in KIMS 이현수 *, 곽정원, 김상열, 김선기, 김승천,
The Recent Status of KIMS Group and New Plan Li Xin (Tsinghua University) KIMS collaboration Aug. 28th, 2006.
J.T. White Texas A&M University SIGN (Scintillation and Ionization in Gaseous Neon) A High-Pressure, Room- Temperature, Gaseous-Neon-Based Underground.
XMASS experiment Current status 10 th ICEPP Symposium in Hakuba 16 Feb 2004 Yohei Ashie ICRR Univ.of Tokyo.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
Large TPC Workshop, Paris, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay.
Development of metal-loaded liquid scintillators for the double beta decay experiment 연세대 : 황명진, 권영준 서울대 : 곽정원, 김상열, 김선기, 김승천, 김태연, 명성숙, 방형찬, 이명재, 이직,
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
Nd double beta decay search with SNO+ K. Zuber, on behalf of the SNO+ collaboration.
VIeme rencontres du Vietnam
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
Dark Matter Search with Direction Sensitive Scintillators The10th ICEPP Symposium February 16, 2004, Hakuba H. Sekiya University of Tokyo.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
June INPC20071 Study of 48 Ca double beta decay with CANDLES OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
PyungChang 2006/02/06 HYUNSU LEE CsI(Tl) crystals for WIMP search Hyun Su Lee Seoul National University (For The KIMS Collaboration)
A simulation study on DBD search with pilot setup AMoRE - SNU jilee.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Development of CaMoO 4 Scintillation Crystals for the 0-  decay search 1.Introduction 2.CaMoO4 Crystal R&D 3.YangYang underground laboratory for KIMS.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
Fast neutron flux measurement in CJPL
Metal loaded liquid scintillator for the double beta decay
SoLid: Recent Results and Future Prospects
Activities on double beta decay search at KIMS
Status of 100Mo based DBD experiment
Simulation for DayaBay Detectors
Muon and Neutron detector of KIMS experiment
XAX Can DM and DBD detectors combined?
Sr-84 0n EC/b+ decay search with SrCl2 crystal
Mo-92 EC/beta+ search with CaMoO4 crystal at Y2L
Development of metal-loaded liquid scintillators
Characterization of Large CaMoO4 crystals for 0n bb search
Davide Franco for the Borexino Collaboration Milano University & INFN
The 0-neutrino double beta decay search
Presentation transcript:

Tin loaded liquid scintillator for the double beta decay experiment Presented by H.J.Kim, KIMS Yonsei Univ, 10/23/2002 Workshop on Underground and Astropparticle Physics Contents 1) Why high-Z loaded liquid scintillator? 2) Spin Dependent WIMP Search with nuclear excitation 3) Double beta decay with Tin 4) R&D status and plan for the Tin loaded LSC 5) Summary and Prospect

Why high-Z loaded scintillator?  Advantage a) Some high-Z can't be used for the good scintillator. b) high-Z can be loaded to LS (>50% or more) c) Fast timing response (few ns) d) Low cost of LS, Large volume is possible e) U/Th/K reduction for LS is low and purification is known  Disadvantage a) Bigger volume is necessary (C,H in LS, low density) b) Moderate light output (~15% of NaI(Tl))  Available Technology : B, Li( 10%),Gd(1%), Pb(5%),Sn(10%) <- Commercial Yb,In(LENS, 10%) loading

High-Z loaded LS physics  Spin dependent Inelastic WIMP search * => Only theoreticl ideas.  Solar neutrino detection LENS (under R&D)  Reactor neutrino oscillation experiment Gd (<1%) loaded LSC  Supernova neutrino detection Gd(<1%) SIREN (under R&D)  Low energy neutrino detection (<~few MeV) Neutrino source experiment (R&D)  Double beta decay Search * => New

Spin Dependent WIMP with nuclear excitation  M.Goodman and E.Witten PRD 31(1985)3059  J.Ellis et al. PLB 212 (1988) 375  RSD = R sdin /R sde = ¾ f (M M1 /,  p,n ) 2 (2J*+1)/(2J+1) /( 2J'(J'+1)),  p =2.79,  n =-1.91; Erec > 0keV threshold for sdin J*:excited state from J, J': SDE M M1 : M1 transition matrix elelment, Calculation from measured  M1 f : phase factor = Integral ( 1/v*dn/dv dv)  keV; f=0.5, 50keV;0.2, 100keV;0.07 at Mw= 100GeV

SD WIMP with nuclear excitation Iso. Abun.(%)  E t(ns) M M1 2 R(Mw=100Gev) I Cs Ho Fe Kr Sn <======= Te Xe Gd Yb W

Double beta decay

0 nu double beta decay limit Most stringent Excited state transition

0 nu double beta evidence ??

Future DB experiment

Why double beta decay (DB) with Sn?  Purpose: Observation of 2nu at Sn-124 and setting most stringint limit on 0nu Sn-122,124 2nu,0nu DB. If we are lucky, we may be discover 0nu double beta decay.  It is important to study many DB source since theoretical prediction is diffcult in calculation  Sn 2-nu DB is not observed and 0-nu DB limit is very poor.  Theoretical predcition of 2-nu and 0-nu life time is as good as others.  Sn can be obtained with pure material : %  10% Sn LSC loading technology is available.

Sn DB limit  Sn-122 -> Cd-122 : EC + beta+(0nu), Q=1922keV Sn-122 -> Te-122 : 2 0nu beta, Q= 366.2keV J.Fremlin and M.C.Walters, Proc. Phys. Soc. A65, 911 (1952) : 0nu limits > 6x10 13  Sn-124 -> Te-124 : Q=2287 keV 0nu (>2.4x10 17 ), 2nu (>1.0x10 17 ) : J.A. Mccarthy, Phys.Rev. 90(1953) 853 Cloud chamber, 2.2g(95% enriched) Sn-124  Sn-124 -> Te-124 excited state transition limit Eric B.Norman, D.Meekhof, Phys. Lett. 195,126(1987) 110cm3 HPGe, LBL with shield, Sn 647g, 666 hour data 2+(603)>2.4x10 18, 2+(1325)>2x10 18, 0+(1656)>2.2x10 18

DB decay diagram of Nb,Zr,Cd and Sn

Limit of Sn 0nu and 2nu DB

Using Tin loaded LSC  Sn-LSC and characteristics * Tin loading : How much? * Light output * Attenuation length * Stability * n, gamma response  Background * Sn background * LSC background * External background  Enrichment? : Sn-124 (5.79%)->95% ; 3000$/g

Tin loading study Technoly is commercally available but not in public  Tin compound 1) 2-Ethyl hexanoate (144g/mole), Tin 15% w 50% loading (CH 3 (CH 2 ) 3 CH(C 2 H 5 )CO 2 ) 2 Sn ( FW405) => Quanching 2) Tetramethyl-tin (40%w50%) : flammable,expensive 3) Tetrabutyl-tin (19%w50%) 4) Others?  LS : Solvent+Solute * Solvent ; PC, 1,2-MN, o-,p-Xylene, Tolune, Benzene.. * Solute ; POP, BPO, PBD, Butyl-PBD, Naphthalene.. * Second-solute ; POPOP, M2-POPOP, bis-MSB...

Tin loading

Tin loading (TBSN 50%->20%Sn)

Tin loading

Tin background study  HPGe measuremnet of TBSN (RND), TBSN (SR) and SnCl4 (RND)  TBSN test with 100% HPGe detector at CPL : 1.0 liter 1 week data taking.  TBSN results : No extra peak compare with background, U,Th,K peaks are consistent with the background within statistical errors. Tl-208 (2600keV peak) ; Cris. Crystal : 0.42mBq, TBSN(RND) 0.45mBq, TBSN(SR) : 0.44mBq. (about 10% statistal errors for measurements)

Sn-124, Sn-122 0,2nu DB limit * World best limit on Sn124 (E.Norman PLB 195,1987) 110cm3 HPGe, LBL with shield, Sn 647g, 666 hours About 1500events/keV at 603 keV energy  Test of TBSN for a week at CPL, Preliminary results 450cm3 HPGe, 140 hours, 1.0liter TBSN : 400g of Sn About 15events/keV at 603 keV energy, full peak efficiency = 2-6% * Preliminary Sn-124 0,2nu DB limit(68% CL)  2+ (603keV) 3.8x10^18 year (4.0x10^19 year)  0+ (1156) 1.1x10^19 year ( 2nu theory : 2.7x10^21)  0+ (1326) 1.3x10^19 year (2.2x10^18 year) * Sn-122 EC+beta+ decay ; 1.5x10^18 year ( 6.1x10^13)

Geant4 simulation for HPGe efficiency

Sn-124 DB excited level transition

Sn-112 EC+beta+ excited level

Summary * high-Z loaded LS can be good candidate for the underground experiment. * There are many physics opportunity with high-Z loaded LS, any new ideas? * Tin loaded LSC can be used for the double beta experiment. (up to 40% Sn loading) * Already we achieved world the best sensitivity for Sn-124, Sn-122 excited level decay and hope to find 2nu double beta as well as 0nu double beta decay mode. * We need theoreticl help on DB prediction and other physics ideas.

Plan * High-Z loaded LS study more : Gd, Zn.... P LAN ( If funding and manpower is allowed) * Coincidence experiment with Tin loaded LSC(1 liter) + HPGe : Almost background free and will improve sensitivity one or two order => This winter * liter of Tin loaded LSC in prototype shielding at CPL. Sensitivity to observe 2nu DB mode. => Next summer * 1-10 ton of Tin loaded LSC or enrichment : This will allow us to compete with world next generation DB experiment ! => Future underground experiment

0 nu double beta decay

Gamma level diagram of Te-124

TBSN with HPGe detector

Limit of Sn

SD with Sn-119 * Advantage a) 24keV excitation + 20ns decay time b)100ns window; 10 7 random bg reduction -> almost background free * Disadvantage a) Detection of Sn recoil energy with quanching b) natural abundance 8.6% (enrichment?) * Study needed a) Detail study of rate estimation with threshold b) Recoiled Sn quanching in LSC c) Background study

2 nu double beta measurement