Unusual magnetotransport properties of NbSe 3 single crystals at low temperature A.A.Sinchenko MEPhI, Moscow, Russia Yu.I.Latyshev, A.P.Orlov IRE RAS,

Slides:



Advertisements
Similar presentations
Chiral Tunneling and the Klein Paradox in Graphene M. I. Katsnelson, K
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Sliding of a charge density wave probed by coherent X-Ray Diffraction E. Pinsolle Laboratoire de physique des solides, Orsay.
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Penetration Depth Anisotropy in MgB 2 Powder Measured by Small-Angle Neutron Scattering by Bob Cubitt & Charles Dewhurst.
Pinning Mode Resonances of 2D Electron Stripe Phases in High Landau Levels Han Zhu ( 朱涵 ) Physics Department, Princeton University National High Magnetic.
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
Hot Electron Energy Relaxation In AlGaN/GaN Heterostructures 1 School Of Physics And Astronomy, University of Nottingham, University Park, Nottingham,
External synchronization Josephson oscillations in intrinsic stack of junctions under microwave irradiation and c-axis magnetic field I.F. Schegolev Memorial.
Interlayer tunneling spectroscopy of NbSe 3 and graphite at high magnetic fields Yu.I. Latyshev Institute of Raduio-Engineering and Electronics RAS, Mokhovaya.
Doped Semiconductors Group IVA semiconductors can be “doped” by adding small amounts of impurities with more or fewer than 4 valence electrons. e.g. add.
“Quantization” of The q-Vectors in Microcrystals of K 0.3 MoO 3 and NbSe 3. S.G. Zybtsev V.Ya. Pokrovskii S.V. Zaitsev-Zotov.
1 Effect of density gradients on magnetotransport of quantum Hall systems L. Ponomarenko.
Electro-Optic Search for Threshold Divergence of the CDW Diffusion Constant in Blue Bronze (K 0.3 MoO 3 ) L. Ladino, J.W. Brill, University of Kentucky.
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
Hall Coefficient of Chromium Rafael Jaramillo Thomas Rosenbaum Lab P335 Project.
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
1 Chapter 27 Current and Resistance. 2 Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current.
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
Quantum conductance I.A. Shelykh St. Petersburg State Polytechnical University, St. Petersburg, Russia International Center for Condensed Matter Physics,
A. Sinchenko, National Research Nuclear University MEPhI, Moscow
Magnetoelastic Coupling and Domain Reconstruction in La 0.7 Sr 0.3 MnO 3 Thin Films Epitaxially Grown on SrTiO 3 D. A. Mota IFIMUP and IN-Institute of.
07/11/11SCCS 2008 Sergey Kravchenko in collaboration with: PROFOUND EFFECTS OF ELECTRON-ELECTRON CORRELATIONS IN TWO DIMENSIONS A. Punnoose M. P. Sarachik.
Fluctuation conductivity of thin films and nanowires near a parallel-
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Hall effect in pinned and sliding states of NbSe 3 A. Sinchenko, R. Chernikov, A. Ivanov MEPhI, Moscow P. Monceau, Th. Crozes Institut Neel, CNRS, Grenoble.
M. Povarnitsyn*, K. Khishchenko, P. Levashov
Crystal structure, T-P phase diagram and magnetotransport properties of new organic metal Crystal structure, T-P phase diagram and magnetotransport properties.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Dirac fermions in Graphite and Graphene Igor Lukyanchuk Amiens University I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, (2004) - Phys.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
A Critical Look at Criticality AIO Colloquium, June 18, 2003 Van der Waals-Zeeman Institute Dennis de Lang The influence of macroscopic inhomogeneities.
Wigner-Mott scaling of transport near the two-dimensional metal-insulator transition Milos Radonjic, D. Tanaskovic, V. Dobrosavljevic, K. Haule, G. Kotliar.
Magnetothermopower in high-mobility 2D electron gas: effect of microwave irradiation Oleg Raichev Department of Theoretical Physics Institute of Semiconductor.
07/11/11SCCS 2008 Sergey Kravchenko in collaboration with: AMAZING PROPERTIES OF STRONGLY CORRELATED ELECTRONS IN TWO DIMENSIONS A. Punnoose M. P. Sarachik.
Galvanomagnetic effects in electron- doped superconducting compounds D. S. Petukhov 1, T. B. Charikova 1, G. I. Harus 1, N. G. Shelushinina 1, V. N. Neverov.
Guest Lecture Stephen Hill
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
A.A. Bykov, I.S. Strygin, D.V. Dmitriev
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
Quantum Hall Effect and Fractional Quantum Hall Effect.
Sergey Kravchenko Divergent effective mass in strongly correlated two-dimensional electron system S. Anissimova V. T. Dolgopolov A. M. Finkelstein T. M.
Epitaxial films of tetragonal Mn 3 Ga: magnetism and microstructure F. Casoli 1,*, J. Karel 2, P. Lupo 3, L. Nasi 1, S. Fabbrici 1,4, L. Righi 1,5, F.
Some motivations Key challenge of electronic materials – to control both electronic and magnetic properties – to process the full electronic states Prospects.
08/09/2005Leiden 2005 Sveta Anissimova Ananth Venkatesan Mohammed Sakr (now at UCLA) Sergey Kravchenko (presenting author) Alexander Shashkin Valeri Dolgopolov.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Igor Lukyanchuk Amiens University
Single crystal growth of Heisenberg spin ladder and spin chain Single crystal growth of Heisenberg spin ladder and spin chain Bingying Pan, Weinan Dong,
Interlayer tunneling spectroscopy in layered CDW materials
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Magnetic field induced charge-density-wave transitions: the role of orbital and Pauli effects Mark Kartsovnik Walther-Meißner-Institut, BADW, Garching,
Transport property of the iodine doped
Interplay of disorder and interactions
How might a Fermi surface die?
"Grafeno : Prêmio Nobel em Física de 2010 e Perspectivas Tecnológicas“
PHY 752 Solid State Physics Electron Gas in Magnetic Fields
Evidence for the chiral anomaly in the Dirac semimetal Na3Bi
Annual Academic Conference of Dept. Physics, Fudan University (2016)
Presentation transcript:

Unusual magnetotransport properties of NbSe 3 single crystals at low temperature A.A.Sinchenko MEPhI, Moscow, Russia Yu.I.Latyshev, A.P.Orlov IRE RAS, Moscow, Russia P.Monceau CRTBT-CNRS Grenoble, France

Outline Magnetoresistance of NbSe 3 : history In-plain negative magnetoresistance Quantum linear magnetoresistance Phase of Shubnikov-de Haas oscillations at different field orientations Summary

R.M.Fleming, et al, PRB,1978J.Richard, et al, PRB, 1987 Solid line - function  0 /(  2 sin 2  +cos 2  ) 1/2  =1/8 P.Monceau, et al, J.Phys.C, 1978 R.M.Fleming, et al, PRB, 1978 M.P.Everson, et al, PRB, 1985 R.V.Coleman, et al, PRL, 1985 J.Richard, et al, PRB, 1987 O.Laborde, et al, EPL, 1987 M.P.Everson, et al, PRB, 1987 P.Monceau, J.Richard, PRB, 1988 T.M.Tritt, et al, PRB, 1988, R.V.Coleman, et al, PRB, 1990

R.M.Fleming, et al, PRB,1978J.Richard, et al, PRB, 1987 Solid line - function  0 /(  2 sin 2  +cos 2  ) 1/2  =1/8 P.Monceau, et al, J.Phys.C, 1978 R.M.Fleming, et al, PRB, 1978 M.P.Everson, et al, PRB, 1985 R.V.Coleman, et al, PRL, 1985 J.Richard, et al, PRB, 1987 O.Laborde, et al, EPL, 1987 M.P.Everson, et al, PRB, 1987 P.Monceau, J.Richard, PRB, 1988 T.M.Tritt, et al, PRB, 1988, R.V.Coleman, et al, PRB, 1990

Results 5.3  m I B I B a*a* c b

Results 5.3  m I B I B a*a* c b 2.7  m

Results 5.3  m I B I B a*a* c b Results 5.3  m I B I B a*a* c b 2.7  m 1.3  m

Results 5.3  m I B I B a*a* c b Results 5.3  m I B I B a*a* c b 2.7  m Results 5.3  m I B I B a*a* c b Results 5.3  m I B I B a*a* c b 2.7  m 1.3  m 1.1  m

Results 5.3  m I B a*a* c b Results 5.3  m I B I B a*a* c b Results 5.3  m I B I B a*a* c b 2.7  m Results 5.3  m I B I B a*a* c b Results 5.3  m I B I B a*a* c b 2.7  m 1.3  m 1.1  m

Results 5.3  m I B I B a*a* c b Results 5.3  m I B I B a*a* c b Results 5.3  m I B I B a*a* c b 2.7  m Results 5.3  m I B I B a*a* c b Results 5.3  m I B I B a*a* c b 2.7  m 1.3  m 1.1  m

Results Temperature evolution d=1  m

Results

B max

Results B max B max is independent on d. At T=4.2 K  B max  =0.12 T.

Results B max B max is independent on d. At T=4.2 K  B max  =0.12 T. at B=0.31 T region of transition to quantum limit

Results B max B max is independent on d. At T=4.2 K  B max  =0.12 T. at B=0.31 T region of transition to quantum limit Sharp drop of resistance in transition region T

Results B max B min B max is independent on d. At T=4.2 K  B max  =0.12 T. at B=0.31 T region of transition to quantum limit Sharp drop of resistance in transition region T

Results B max B min B max is independent on d. At T=4.2 K  B max  =0.12 T. at B=0.31 T region of transition to quantum limit A=const Larmor diameter corresponding to B min D  d Sharp drop of resistance in transition region T

Results B max B min B max is independent on d. At T=4.2 K  B max  =0.12 T. at B=0.31 T region of transition to quantum limit A=const Larmor diameter corresponding to B min D  d d c =5-8  m Sharp drop of resistance in transition region T

Results B max B min B max is independent on d. At T=4.2 K  B max  =0.12 T. at B=0.31 T region of transition to quantum limit A=const Larmor diameter corresponding to B min D  d d c =5-8  m Sharp drop of resistance in transition region T

Quantum lenear magnetoresistance [AA..Abrikosov, J.Phys.A (2003); PRB (1998), PRB (1999)] Landau bands in an isotropic model for moderate magnetic field. Many bands contain electrons Landau bands in the quantum limit. Only the lowest band contains electrons. The conditions: NbSe 3 In the case of small electron groups (layer materials with small electron and hole pockets) in strong (  1) magnetic field perpendicular to the field resistivity:   1 at H=0.03 T

Below quantum limit, D>d R B2R B2 I B I B I B I B I B I B I B I B I B Quantum limit, D>d negative magnetoresistance Quntum limit, D<d Quantum linear magbetoresistance e

Angle dependence of magnetoresistance IIIIIIIII B

IIIIIIIII B

Only parallel to c-axis component of magnetic field determines the orbital motion of carriers

momenta of pockets carriers are predominantly oriented along b-axis (chain direction) of crystal (Sinchenko, Latyshev, Monceau, 2005) Angle dependence of magnetoresistance IIIIIIIII B (d>dc)(d>dc) axially symmetric case:

Summary The negative in-plain magnetoresistance has been observed in NbSe 3 single crystals with the sample thickness less some critical value that is determined by the Larmor diameter at magnetic field corresponding to transition to the quantum limit. The momenta of carriers that are not condensed in CDW are predominantly oriented along the conducting chains.