K2 - 19, THE FIRST K2 MULTI-PLANETARY SYSTEM SHOWING TTVS Susana C.C. Barros Instituto de Astrofísica e Ciências do Espaço, Porto, Portugal Collaborators:

Slides:



Advertisements
Similar presentations
PLAnetary Transits and Oscillations of stars H. Rauer 1, C. Catala 2, D. Pollacco 3, S. Udry 4 and the PLATO Team 1: Institut für Planetenforschung, DLR.
Advertisements

Timing of Transiting Planets Eric Agol, University of Washington.
Modeling and Observing Kepler Planetary Systems with Large TTVs
Planetary Migration and Extrasolar Planets in the 2:1 Mean-Motion Resonance (short review) Renate Zechner im Rahmen des Astrodynamischen Seminars basierend.
Radial Velocity follow-up of SWASP-North candidates with SOPHIE (1.93-m OHP) G. Hébrard & F. Bouchy (IAP/OHP)
The observation of exoplanet transit events in China Xiao-bin Wang 1, Sheng-hong Gu 1, Andrew Collier Cameron 2, Xiang-song Fang 1, Dong-tao Cao 1 and.
Detection and Photometric Monitoring of QSOs and AGN with COROT J. Surdej, J.Poels, J.-F. Claeskens, E. Gosset Institut d’Astrophysique et de Géophysique,
M. Deleuil Laboratoire d’Astrophysique de Marseille CoRoT mission highlights P. Bordé, A. Léger, M. Ollivier, B. Samuel (IAS), J.M. Almenara, A. Bonomo,
High-precision eclipse photometry for CoRoT planets CoRoT symposium 2009 Feb 2 - 5, Paris M. Gillon (Geneva - Liege) & A. Lanotte, T. Barman, B.-O. Demory,
Planet Characterization by Transit Observations Norio Narita National Astronomical Observatory of Japan.
Investigating the structure of transiting planets, from hot Jupiters to Kepler super Earths Jonathan Fortney University of California, Santa Cruz Thanks.
Transits from Space: 1. The CoRoT mission. Why do Transit searches from Space? 1.No scintillation noise → One can reach the photon limit 2. No atmospheric.
SEARCHING FOR PLANETS IN THE HABITABLE ZONE. FROM COROT TO PLATO Ennio Poretti – INAF OAB.
Transit Timing Variations Szilárd CsizmadiaJena University Institut for Planetary Research, German Aerospace Center Berlin, Germany
Reaching the 1% accuracy level on stellar mass and radius determinations from asteroseismology Valerie Van Grootel (University of Liege) S. Charpinet (IRAP.
Science Opportunities for HARPS-NEF David W. Latham PDR - 6 December 2007.
All About Exoplanets Dimitar D. Sasselov Harvard-Smithsonian Center for Astrophysics.
Extrasolar Planets.I. 1.What do we know and how do we know it. 2.Basic planetary atmospheres 3.Successful observations and future plans.
New Results from Kepler: Systems of Multiple Transiting Planets w/ Correlated TTVs Eric B. Ford Extreme Solar Systems II September 12, 2011 Based on a.
Based on the definition given by Kasting et al. (1993). The Habitable Zone.
Lecture 16: Searching for Habitable Planets: Remote Sensing Methods and parameters we can measure Mean density measurements: internal structure Measurements.
Extrasolar Planets extrasolar = outside of (external to) our solar system.
Properties of binary systems found in the CoRoT exoplanet search J.M. Almenara, H. Deeg, CoRoT Detection WG, CoRoT Ground-Based Follow-Up WG, Planets in.
Norio Narita (NAOJ Fellow) Special Thanks to IRD Transit Team Members
What stellar properties can be learnt from planetary transits Adriana Válio Roque da Silva CRAAM/Mackenzie.
The Transit Method When a planet crosses in front of its star as viewed by an observer, the event is called a transit. Transits produce a very small change.
The mass ratio of the stellar components of a spectroscopic binary can be directly computed from their ratio in radial velocities. To derive the total.
The NASA/NExScI/IPAC Star and Exoplanet Database 14 May 2009 David R. Ciardi on behalf of the NStED Team.
Adriana V. R. Silva CRAAM/Mackenzie COROT /11/2005.
Investigating the structure of transiting planets, from hot Jupiters to Kepler super Earths Jonathan Fortney University of California, Santa Cruz Thanks.
Photometric detection of the starlight reflection by a “Pegasi” planet Martin Vannier (1), Tristan Guillot (2), Suzanne Aigrain (1) (1) ESO, Chile (2)
Observation of the photocentre position variations with CoRoT - Scientific motivations and expected performance C. Moutou (LAM) – H. Deeg (IAC) – M. Ollivier.
Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics.
Travis Metcalfe (NCAR) Asteroseismology with the Kepler Mission We are the stars which sing, We sing with our light; We are the birds of fire, We fly over.
Korean Astronomical Society Meeting, April 22, 2005 Scott Gaudi Harvard-Smithsonian Center for Astrophysics & Topics in the Search for Extrasolar Planets.
Corot Week 9 ESTEC 5-9 Dec 2005 Frédéric Pont Geneva Observatory Lessons from the OGLE planetary transit survey Francois Bouchy (Marseille/OHP), Nuno Santos.
A STEP Expected Yield of Planets … Survey strategy The CoRoTlux Code Understanding transit survey results Fressin, Guillot, Morello, Pont.
A Dedicated Search for Transiting Extrasolar Planets using a Doppler Survey and Photometric Follow-up A Proposal for NASA's Research Opportunities in Space.
SOCHIAS Santiago, January Sergio Hoyer Miranda Departamento de Astronomía Universidad de Chile 1.
Transit Timing, Radius, Albedo, and Satellites of Extrasolar Planets with MagIC’s Upgrade Mercedes López-Morales Carnegie-DTM.
Leslie Rogers Hubble Fellow California Institute of Technology Kepler Science Conference II – November 4, 2013 Glimpsing the Compositions.
Transit Spectroscopy with HST/WFC3 January 18, 2012 Exoplanet Transit Spectroscopy with HST/WFC3: Probing H 2 O with New Precision Avi M. Mandell NASA.
Spin-Orbit Alignment Angles and Planetary Migration of Jovian Exoplanets Norio Narita National Astronomical Observatory of Japan.
Detection of Extrasolar Giant Planets Hwihyun Kim 03/30/06.
Spitzer Space Telescope Spitzer Meets K2 M.Werner, J.Livingston, V.Gorjian, JPL/Caltech; C.Beichman, D.Ciardi, J.Christiansen, R.Akeson, NExSci; J.Krick,
Characterization and selection of extrasolar planetary transit candidates Jose A. Gallardo N. P. Universidad Catolica de Chile, Santiago, Chile. Ecole.
Eva Meyer MPIA-Student-Workshop, Italy Various information from different detection methods.
Exoplanet Discovery Joshua Pepper Vanderbilt University Keivan Stassun, Rob Siverd, Leslie Hebb, Phil Cargile - Vanderbilt University Rudi Kuhn – The University.
Occultation Studies of the Outer Solar System B. Scott Gaudi (Harvard-Smithsonian Center for Astrophysics)
Sarah, Ellie, Adan and Sruthy. The Transit Method.
Kepler’s Laws & Planetary Motion
Introduction: Goals for JWST Transit Meeting C. Beichman Jonathan Lunine March 11, 2014.
GIRAFFE (VLT): A new tool for exoplanets preparatory observations and follow-up Benoît Loeillet (LAM), François Bouchy, Magali Deleuil, Claire Moutou,
Planets In Transit: The Shadow Knows! David Charbonneau California Institute of Technology STScI May Symposium – 3 May 2004.
HD and its super-Earth Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge),
Extrasolar Planets. An Extrasolar planet, or exoplanet, is a planet outside the Solar System. First exoplanet was confirmed indirectly at G-type star.
The Doppler follow-up of COROT transit candidates F. Bouchy Laboratoire d’Astrophysique de Marseille Corot Week 8 – 23/27 May 2005.
Timing Transits to Find Extrasolar Earths Eric Agol, Jason Steffen (UW) Re’em Sari (Caltech) Will Clarkson (Southampton) (MNRAS, in press)
AFS Lecture 4. COROT, COnvection, ROtation & Transits exoplanétaires.
Planetary Sizes Dimitar Sasselov Harvard-Smithsonian Center for Astrophysics.
user perspective Status Report on SOFIA Exoplanet Transit Capability
Chapitre 1- Introduction
Recent Results and Future Improvements
COROT, COnvection, ROtation & Transits exoplanétaires
1 / 12 Simultaneous Spectroscopic & Photometric Observations of a Transit of TrES-1b Norio Narita (UT, JSPS Fellow) Collaborators K. Enya (JAXA), B. Sato.
Past and Future Studies of Transiting Extrasolar Planets
Stellar Mass.
Pulsar Timing Score = 33 How it works
The Search for Exomoons
Search and Characterization
Presentation transcript:

K2 - 19, THE FIRST K2 MULTI-PLANETARY SYSTEM SHOWING TTVS Susana C.C. Barros Instituto de Astrofísica e Ciências do Espaço, Porto, Portugal Collaborators: Almenara, J.M.; Demangeon, O.; Tsantaki, M.; Santerne, A.; Armstrong, D.; Barrado, D.; Brown, D.; Deleuil, M.; Lillo, J.; Osborn, H.; Pollacco, D.; Abe, L.; Andre, P.; Bendjoya, P.; Boisse, I.; Bonomo, A.; Bouchy, F.; Bruno, G.; Rey Cerda, J.; Courcoul, B.; Díaz, R.; Hebrard, G; Kirk, J.; Lachurie, J.; Lam, K.; Martinez, P.; McCormac, J.; Moutou, C.; Rajpurohit, A.; Rivet, J.-P.; Spake, J.; Suárez, O.; Toublanc, D.; Walker, S.

K2-19b & c (EPIC ) Susana Barros3 November P b ~ 8 days, R b = 7.23+/-0.6 R earth P c ~ 12 days R c = 4.21+/-0.31 R earth  Discovered in campaign 1 (Armstrong et al. 2015)  System two Neptune size planets  Very close 3:2 mean motion resonance  Constrain the masses: M b < 245 M Earth, M c < 280 M Earth

Near resonant systems 3 November 2015Susana Barros 3 -Amplitude of the TTV curve is proportional to the dynamic masses and eccentricities (Holman et al 2005, Agol 2005, Lithwick et al. 2012) - The libration period is inversely proportional to the distance to the resonance. -K2-19 is one of the closest systems to 3:2 MMR  long libration period > 1.5 years not detectable in the duration our observations Adapted from Lithwick et al. 2012

Chopping short period TTVs 3 November 2015Susana Barros 4 Kepler-88 Nesvorny et al 2013 later confirmed Barros et al 2014 TTVs short-timescale component “chopping” at synodic timescale (Nesvorný & Beaugé 2010; Nesvorný & Vokrouhlický 2014; Deck & Agol 2015). Proportional to mass ratios, lifts degeneracy  uniquely estimate the planetary masses.

LAM K2 pipeline Based on CoRoT imagette pipeline (Barros et al. 2014) Optimised aperture to maximise S/N (e.g. Adda et al. 2000) Self-flat field correction method (Vanderburg & Jonhson 2014) Susana Barros3 November Barros et al. in prep. Poster DA.9 by Olivier Demangeon

Transit fitting K2 3 November 2015Susana Barros 6 Planet b Planet c

Follow–up transit observations Epoch cm NITES telescope La Palma Epoch m C2PU/Omicron at Calerm, France Epoch 36 - Belesta 82-cm, France Susana Barros3 November Planet b

Photodynamical model Mercury N-body Transit/RV model Likehood 3 November 2015Susana Barros 8 MCMC masses and radius of all bodies + planetary orbital parameters at reference time Almenara, J. M. et al. 2015, MNRAS, 453, 2644 Standard TTV: fit transit times  TTVs  system dynamics

Advantages Fully consistent analysis Exploit all photometric measurements (e.g. TTVs, TDVs) Doppler detection + light curve  Absolute masses Dynamics helps constrain the TTVs and TDVs  Higher precision in system parameters (Almenara et al. 2015) Less sensitive to systematics Long computation time 3 November 2015Susana Barros 9 Derived from the model gravitationally assisted Disadvantage

3 November 2015Susana Barros 10 Planet b Planet c

3 November 2015Susana Barros 11 Results Dynamically constrained – independent from stellar parameters

K2 data only: chopping is detected! Susana Barros3 November Planet b Planet c Consistent results with the results of the full dataset

Compare with traditional TTV 3 November 2015Susana Barros 13 Values agree Double uncertainties Planet b Planet c

Planetary composition 3 November 2015Susana Barros 14 M b = 44 +/- 12 M c = /- 7.0 M-R models for solid planets (Zeng et al 2013) M-R models for planets with H/He envelopes for different metal enrichment Z (Barraffe et al 2008)

Take home messages The planets have significant gaseous envelopes and K2- 19c has higher metal enrichment than K2-19b. A photodynamical model leads to a better constrain on the system parameters. Detecting short period TTVs (chopping) in K2-19 allows to constrain the system without long time coverage. Powerful tool for K2, CHEOPS, TESS… 3 November 2015Susana Barros 15 Thanks