GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan-19-2006 1 Local Group of Galaxies in the EGRET era and perspectives for GLAST Igor V. Moskalenko Stanford.

Slides:



Advertisements
Similar presentations
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
Advertisements

The Universe of Galaxies. A Brief History Galileo.
The Kavli FoundationThe National Science Foundation Unidentified EGRET Sources and the Extragalactic Gamma-Ray Background Vasiliki Pavlidou University.
The Kavli FoundationThe National Science Foundation Guaranteed Unresolved Point Source Emission and the Gamma-ray Background Vasiliki Pavlidou University.
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
Astroparticle physics 2. The Milky Way interstellar medium and cosmic-rays Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
Galaxies and the Universe
GAMMA-RAYS FROM COLLIDING WINDS OF MASSIVE STARS Anita Reimer, Stanford University Olaf Reimer, Stanford University Martin Pohl, Iowa State University.
The Milky Way Galaxy part 2
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Cosmology with the extragalactic gamma-ray background Vasiliki Pavlidou University of Chicago.
Challenges in Revealing Dark Matter from the High Energy Gamma-Ray Background (Continuum) Ranga-Ram Chary Spitzer Science Center, Caltech
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
SLAC, 7 October Multifrequency Strategies for the Identification of Gamma-Ray Sources Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray.
Particles and Fields in Lobes of Radio Galaxies Naoki Isobe (NASDA, MAXI Mission) Makoto Tashiro (Saitama Univ.) Kazuo Makishima (Univ. of Tokyo) Hidehiro.
The Kavli FoundationThe National Science Foundation Constraining Populations of Extragalactic Gamma-ray Sources with the Extragalactic Gamma-ray Background.
Igor V. Moskalenko (Stanford) with S. Digel (SLAC) T. Porter (UCSC) O. Reimer (Stanford) O. Reimer (Stanford) A. W. Strong (MPE) A. W. Strong (MPE) Diffuse.
GLAST and NANTEN Molecular clouds as a probe of high energy phenomena Yasuo Fukui Nagoya University May 22, 2007 UCLA.
SLAC, 7 October Multifrequency Strategies for the Identification of Gamma-Ray Sources Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
14 July 2009Keith Bechtol1 GeV Gamma-ray Observations of Galaxy Clusters with the Fermi LAT Keith Bechtol representing the Fermi LAT Collaboration July.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Igor V. Moskalenko (Stanford U.) with A.Strong (MPE), S.Digel (SLAC), T.Porter (USCS), O.Reimer (SU) Modeling of the Galactic diffuse continuum γ-ray emission.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
Yutaka Fujita (Osaka U.) Fuijta, Takahara, Ohira, & Iwasaki, 2011, MNRAS, in press (arXiv: )
High-energy electrons, pulsars, and dark matter Martin Pohl.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
Roland Crocker Monash University The  -ray and radio glow of the Central Molecular Zone and the Galactic centre magnetic field.
Discovery of  rays from Star-Forming Galaxies New class of nonthermal sources/gamma-ray galaxies (concept of temperature breaks down at high energies)
Figure 5. The LAT and the GLAST spacecraft. GLAST will also carry a gamma-ray burst monitor, the GBM instrument. For more information about GLAST, see.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
Analysis methods for Milky Way dark matter halo detection Aaron Sander 1, Larry Wai 2, Brian Winer 1, Richard Hughes 1, and Igor Moskalenko 2 1 Department.
The Millisecond Pulsar Contribution to the Rising Positron Fraction Christo Venter 34 th ICRC, The Hague, The Netherlands, 30 July – 6 August 2015 Collaborators:
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
Tsunefumi Mizuno 1 Fermi_Diffuse_2009Mar.ppt Diffuse Gamma- Rays seen by Fermi- LAT and Cosmic- Ray Distributions Tsunefumi Mizuno Hiroshima Univ. on behalf.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Cosmic Rays High Energy Astrophysics
Expected Gamma-Ray Emission of SN 1987A in the Large Magellanic Cloud (d = 50 kpc) E.G.Berezhko 1, L.T. Ksenofontov 1, and H.J.Völk 2 1 Yu.G.Shafer Institute.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Supernova remnants: evolution, statistics, spectra.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Damien Parent – Moriond, February PSR J , PSR J , and their cousins -- young & noisy gamma ray pulsars Damien Parent on behalf of.
Observations of SNR G at 6cm JianWen Xu, Li Xiao, XiaoHui Sun, Chen Wang, Wolfgang Reich, JinLin Han Partner Group of MPIfR at NAOC.
Population Studies of the Unidentified EGRET Sources In collaboration with A. V. Olinto, V. Pavlidou, C. Brown, and B. D. Fields Image Credit: EGRET Team/NASA/Honeywell.
SNRs: (& PWNe, SBs, …) Future Science Objectives and Instrument requirements Terri Brandt NASA / Goddard Fermi Symposium GammaSIG Session 13 Nov 2015.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Modified from talk of Igor V. Moskalenko (Stanford U.) GALPROP & Modeling the Diffuse  -ray Emission.
Status and issues for the LAT interstellar emission model
Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey
Isotopic abundances of CR sources
on behalf of the Fermi-LAT Collaboration
Presentation transcript:

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Local Group of Galaxies in the EGRET era and perspectives for GLAST Igor V. Moskalenko Stanford Gamma-ray Large Area Space Telescope

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Local Group of Galaxies  Milky Way and M31 are the dominant galaxies in the group  Many others are irregular or dwarf spheroidal  Additional members are still being discovered

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Local Group of Galaxies in 3D

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan One More Picture of the Local Group

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan LMC Type: Irr/SB(s)m Magnitude: 0.9 Size: 650 x 550 arcmin ~few kpc Distance: ~50 kpc NOAO/AURA/NSF 30 Doradus NE

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Small Magellanic Cloud: SMC Type: Im IV-V Magnitude: 2.3 Size: 280 x 160 arcmin <kpc Distance: ~60 kpc NOAO/AURA/NSF

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Andromeda Galaxy: M31 Type: SA(s)b I-II (Hubble: ordinary spiral s- shaped with well defined arms) Magnitude: 3.4 Size: x 75.0 arcmin >50 kpc Distance: 725 kpc NOAO/AURA/NSF

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan M31 again NOAO/AURA/NSF M32 NGC205

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Triangulum Galaxy: M33 Type: Mag: Size: Distance: SA(s)cd II-III ’x41.5’ 795 kpc (ordinary spiral s-shaped with loose arms) >10 kpc NOAO/AURA/NSF opt + radio (HI)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Summary: EGRET Observations  LMC detection: CR density is similar to MW  SMC non-detection: CR density is smaller than in the MW (otherwise it would be ~2.4x10 -7 cm -2 s -1 )  CRs are galactic and not universal !  M31 non-detection: has to have smaller CR density than the MW (size M31>MW!) SourceF(>100 MeV), cm -2 s -1 LMC(1.9±0.4)x10 -7 SMC<0.5x10 -7 M31<0.8x10 -7 Sreekumar et al.( ) L MW (>100 MeV)~5.4x10 39 erg/s (SMR00) ~3x10 43 phot/s F MW distance) ~ 4.4x10 -7 cm -2 s -1

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Simplified diffuse emission model CR intensity is proportional to the rate of SN explosion~R CR intensity is proportional to the rate of SN explosion~R Assuming the same emissivity per H atom q γ Assuming the same emissivity per H atom q γ  -ray luminosity is proportional to the total gas mass ~M -ray luminosity is proportional to the total gas mass ~M Gamma-ray production: brems, IC, π 0 only π 0,brems Gamma-ray production: brems, IC, π 0 only π 0,brems  [Source (injection) spectrum same as in MW]  Interstellar radiation field (IC, e ± energy losses)  Nuclear & particle production cross sections  Energy losses: ionization, Coulomb, brems, IC, synch  Transport equations for all CR species  Fix propagation parameters

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Some Math (Pavlidou & Fields 2001) Transport equation for CR number density (steady-state leaky-box): Trivial solution: In terms of CR flux: Assuming CR injection rate proportional to SN rate: CR flux in a galaxy G: l esc (G) ~ l esc (MW)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Some Math (cont’d) γ-ray flux from a galaxy: Combined: π 0 x1.55 (bremss) x1.5 (A>1 nuclei) Emissivity calcs q(>100 MeV): pp → π 0 x1.55 (bremss) x1.5 (A>1 nuclei)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Properties of the LG galaxies & γ-ray flux MW ~2.5HI ~ H 2 (2-6)x kpc 60 kpc 725kpc 795kpc 5.5x x x x x x x x10 8 MM 6.7x x x x10 9 HIH2H2 total MM MM

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Order of magnitude estimates show that LMC, SMC, M31, M33 will be detectable by GLAST, but…  GLAST will resolve these galaxies so we need more detailed modeling

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan LMC Observations by GLAST (simulation) ROSAT Digel et al. (2000)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan M31 Observations by GLAST (simulation) Digel et al. (2000) Scaled MW tot. (SMR00) >1 GeV

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan More Sophisticated Modeling of diffuse emission  SNR rate and distribution  Gas distribution (at least, surface column density)  Magnetic field  Interstellar radiation field  Estimates of pulsar contribution (using MW observations) No new calculations yet!

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan MW SN Rate SN rate determination:  Massive star formation rate ( )  Chemical evolution (1.9, 2.5)  From the historical records (2- 9)  Extragalactic SN discoveries (2-5) MW average ~2.5±? per century

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Example: SN age estimates  Association with a pulsar → t=P/(2dP/dt)  Using total SN explosion energy and energy loss → t=E tot /(dE/dt)  Using SNR diameter and expanding velocity → t=DC/2v s C=1 freely expanding SNR C=2/5 adiabatic expansion (Sedov phase) C=2/7 radiative expansion  Using radius and temperature (X-rays) → t=380 R pc (kT,keV) -1/2 yr  Using synchrotron break frequency → t=40000 B -3/2 ν b -1/2 yr Distance determination (SN mag., SNR kinematics, HI abs. etc.)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Example: D vs. t Sample of 80 SNR, Xu et al. (2005)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Distribution(s) of Extragalactic SNR Sasaki et al. (2004) LMC radio LMC X-rays M33 radio M31 radio M33 radio M31 X-rays MW Normalized radius Surface density, kpc -2 “Blue” & FIR luminosities of a galaxy & H α 1 SNu = N/(10 10 L B  ) per century MW (Sb) ~2.0x10 10 L B  x1.21 ~2.4 cy -1 Tammann et al. (1994) Cappellaro et al. (1999)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Distribution of CR Sources & Gradient in the CO/H 2 CR distribution from diffuse gammas (Strong & Mattox 1996) SNR distribution (Case & Bhattacharya 1998) sun X CO =N(H 2 )/W CO : Histo –This work, Strong et al.’ Sodroski et al.’95,’97 1.9x Strong & Mattox’96 ~Z -1 – Boselli et al.’02 ~Z Israel’97,’00, [O/H]=0.04,0.07 dex/kpc Pulsar distribution Lorimer 2004

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan ATCA Statistics of Extragalactic SNRs Synch. luminosity L ν ~ν α Electron spectrum N e ~p γ Index relationship α=(γ+1)/2 SMC Indicates same SNR physics as in the MW (electron index γ~-2) Filipovic et al. (2005) SMC M33 Duric (2000)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan SNRs in M31 (XMM-Newton) Pietsch (2005) M31M33 SNR(M31) =44 SNR(M33) =44

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Starburst regions in LMC 8.6 GHz map HII (greyscale) +CO (red) +stellar complexes ▼ HII SNR (54)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan SMC: SNRs and HII Regions with radio index GHz spectral index □ SNRs x HII Filipovic et al. (2005)

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Parkes HI survey: LMC & SMC Brüns et al. (2005) HI (x10 8 M ☼ ) LMC(4.41±0.09)x[d/50kpc] 2 SMC (4.02±0.08)x[d/60kpc] 2 Bridge 1.84x[d/55kpc] 2 Interface1.49x[d/55kpc] 2

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Magnetic Field B-regB-randB-totz-scale, kpc LMC1.1 μG4.1 μG4.6 μG Gaensler et al. (2005) M31~5 μG ~5 μG~7.1 μG >1 kpc (6-14kpc) Fletcher et al. (2004) (axisymmetric) SMR 2000 MW

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Interstellar Radiation Field: SMC SMC MW SMC Bot et al ISOPHOT+HiRes IRAS+ATCA/Parkes Porter & Strong 2005 MW CMB

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Interstellar Radiation Field: M31 Gordon et al (MIPS) L IR ~1.7x10 43 erg/s Star form. rate: ~0.75 M * /yr (cf. MW ~3M * /yr) Deprojected

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Pulsar Contribution: LMC Zhang & Cheng 1998 Thompson 2001 LMC Pulsar statistics: using MW pulsar observations

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan EGRB in different directions EG GeV excess ?! y -star formation rate  -gas mass fraction Pavlidou & Fields 2002 SMR04 Elsasser&Mannhaim 2005 SMR2004 Hunter et al. region: l=300°-60°,|b|<10° EB frm Normal Galaxies Conventional Optimized

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan What the Local Group Can Tell US?  Further evidence that CR are galactic (not universal/extragalactic)  Better understanding of the processes governing by the CR production and propagation in the MW and elsewhere  More reliable predictions for starburst galaxies  Study of the history of CR in other galaxies using Be,B observations in stars (chemical evolution)  Estimates of the EG background from the normal galaxies (Cosmology, Cosmological DM etc.)  Need targeted multi-wavelength observations or/and archive data  Large diffuse emitters –we must have them in our diffuse background model !

GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan That’s it!