Future of HIV vaccines Charlotta Nilsson Folkhälsomyndigheten

Slides:



Advertisements
Similar presentations
Thoughts about Development of HIV and HCV Gene-Based Vaccines Britta Wahren Karolinska Institutet St Petersburg April 2012.
Advertisements

HPV Vaccines: What We Know and What We Should Expect Laura Koutsky, PhD Professor of Epidemiology University of Washington Seattle, WA.
Immune control of human papillomavirus (HPV) associated anogenital disease and potential for vaccination Peter L. Stern Journal of Clinical Virology, 2005.
“ The therapeutic effect of FIT- 06, GTU®-Multi-HIVB DNA vaccine, observed in HIV-1 infected people. Results of a Phase II trial”. Prof. Mart Ustav SVP,
Prevalence of HBV* by Region
Up date on malaria vaccine
Pox-Protein Public-Private Partnership (P5)
Virsuses: Human Immunodeficiency Syndrome & Acquired Immunodeficiency Syndrome.
DNA Vaccination Anneline Nansen
Avian and Pandemic Influenza Vaccine Development John Treanor Professor of Medicine University of Rochester Medical Center Rochester, NY.
Immunoprophylaxis (prophylactic immunization). Immunoprophylaxis Types of immunization Immunoglobulins and vaccines Strategies in vaccine preparation.
Vaccines Robert Beatty MCB150. Passive vs Active Immunity  Passive immunization transfer of antibodies  Vaccines are active immunizations (mimic natural.
HIV-VACCINES. HIV - Vaccines  Vaccine development remains priority of AIDS research   Best hope for protection against HIV infection.
What can we learn from diverse spectrum of HIV/SIV infections? Françoise BARRÉ-SINOUSSI Regulation of Retroviral Infections Unit Department of Virology.
National Vaccine Advisory Committee November 29, 2005 Update on NIH H5N1 Vaccine Trials Linda C. Lambert Chief, Respiratory Diseases Branch Division of.
Immune Strategies for HIV Prevention
BCG complications.
AVAC Global Advocacy for HIV Prevention AIDS Vaccines: The basics May 2015.
HIV Testing CDC power point edited by M. Myers
Dr Himani. Foams or creams that people can use in vagina or rectum during sex to prevent transmission Currently, there is no vaccine to prevent HIV. This.
Vaccines Polio - close to eradication. In 2001 >1000 cases worldwide; last wild case in Americas in Peru in 1991.
HIV Vaccine Research & Development
Types of vaccines 1 - First generation vaccines are whole-organism vaccines - either live and weakened, or killed forms. [1] Live, attenuated vaccines,
AIDS Vaccine R&D (post-AIDSVAX®). R&D challenges Products in development Funding AIDS vaccine R&D Access and advocacy.
Novel strategies for prevention and treatment of HIV infection Prasit Faipenkhong Pairoaj Vonghathaipaisarn Rodjana Chunhabundit Zhang Jianjun.
STATENS SERUM INSTITUT DNA Vaccination Anneline Nansen Department of Infectious Disease Immunology Statens Serum Institut (SSI)
Summarising Male Circumcision Efficacy: Results of the three randomised clinical trials Neil A Martinson Perinatal HIV Research Unit.
Dr Hannah Kibuuka Makerere University Walter Reed Project Presentation at the Uganda Medical Association-Uganda Veterinary Association joint conference.
The HCV vaccine: cooperation in the shadow of the pyramids Antonella Folgori.
Phagocyte. B cells Receptor B Cell Naïve B cell B cells and antibodies daughter cells produce antibodies phagocyte consumes an antibody coated virus.
RV 144: The Thai Phase III Trial and Development of a Globally-Effective, Multi-Clade HIV Vaccine HIV Vaccine: Quo Vadis AIDS July 2010 Dr. Merlin.
HIV/AIDS vaccine development Lecture 10 Biomedical Engineering for Global Health.
DIAGNOSIS OF HIV INFECTION THE LABORATORY BY DR. K.BUJJIBABU.MD.
Aim: How do vaccinations protect us against disease ? Immunity is the ability of an organism to resist disease by identifying and destroying foreign substances.
Lab of Immunoregulation Berkower Lab Weiss Lab -- Angelo Spadaccini -- Russell Vassell -- Yisheng Ni -- Yong He -- Yisheng Ni -- Yong He –Hong Chen --
Immune system dynamics. Figure 17.1 Antibody- antigen binding Figure 17.1 Antigens (Ag) Protein or polysaccharide Can be attached or free from cell Antibodies.
AIDS Vaccines: the basics CindraFeuer AVAC: Global Advocacy for HIV Prevention 20 April 2010 The HIV Research Catalyst Forum Baltimore, Maryland April.
HIV Cellular Pathogenesis III Benhur Lee, M.D.. Adult v. infant (IgG v. IgA) CTL response (MHC tetramers) p24 antigenimia Ab response Viral load.
ANIMAL MODELS FOR HIV VACCINES Girish N. Vyas, Ph.D. UCSF School of Medicine, San Francisco (UCSF) A quote from the keynote Address at the January, 2008.
. A Randomized Clinical Trial of Immunization With Combined Hepatitis A and B Versus Hepatitis B Alone for Hepatitis B Seroprotection in Hemodialysis Patients.
Live Attenuated Malaria Vaccine
Human clinical trial of DNA-MVA HIV vaccine candidate begins A Phase I study, called RV262, recently began to evaluate a combination DNA prime/MVA vector.
Vaccines: A Molecular View
IAS Members Meeting July 19th 2011 Achievements and learning over the past 30 years: what do we need next? Françoise BARRÉ-SINOUSSI Regulation of Retroviral.
DR.FATIMA ALKHALEDY M.B.Ch.B;F.I.C.M.S/C.M.
HIV/AIDS.
25 Years of HIV Vaccine Research: What have we accomplished? José Esparza MD, PhD Senior Advisor on HIV Vaccines Global Health Program The Search for an.
HUMAN IMMUNODEFICIENCY VIRUS AND ACQUIRED IMMUNODEFICIENCY SYNDROME (AIDS)
CATEGORY: VACCINES & THERAPEUTICS HIV-1 Vaccines Shokouh Makvandi-Nejad, University of Oxford, UK HIV-1 Vaccines © The copyright for this work resides.
MHRP  The views expressed are those of the authors and should not be construed to represent the positions of the U.S. Army or the Department of Defense.
HAART Initiation Within 2 Weeks of Seroconversion Associated With Virologic and Immunologic Benefits Slideset on: Hecht FM, Wang L, Collier A, et al. A.
1 Considerations in the Pre- and Early Pandemic Use of Influenza Vaccine Jesse L. Goodman, MD, MPH Center for Biologics Evaluation and Research, VRBPAC,
HVTN 702: A pivotal phase 2b/3 multi-site, randomized, double-blind, placebo-controlled clinical trial to evaluate the safety and efficacy of ALVAC-HIV.
04/19/ Projected effectiveness of mass HIV vaccination with multi-dose regimens to be tested in South Africa Peter Gilbert Dobromir Dimitrov Christian.
SAFETY AND EFFICACY OF MVA85A, A NEW TUBERCULOSIS VACCINE, IN INFANTS PREVIOUSLY VACCINATED WITH BCG: A RANDOMISED, PLACEBO-CONTROLLED PHASE 2B TRIAL Michele.
Methods of Infection Prevention in Advanced HIV Care Francesca Conradie President of the Southern African HIV Clinicians Society.
Influence of Adjuvants on HIV Env Clade C Immunity
HIV-1 Vaccines Shokouh Makvandi-Nejad, University of Oxford, UK
RV305 ADCC Update 10-February-2016 G. Ferrari.
Non-ARV Based Interventions to Combat HIV/AIDS: New Insights and Initiatives Yves Lévy Inserm, VRI.
HIV preventative vaccines Overview of the P5 program
Making Vaccines.
HIV Vaccine Trials Network
Volume 5, Issue 1, Pages (January 2009)
Annual Research Day 17 April 2015
HIV Vaccine Development
Volume 15, Issue 9, Pages (September 2007)
Volume 15, Issue 9, Pages (September 2007)
Volume 5, Issue 1, Pages (January 2009)
Understanding Vaccine Partial Efficacy
Presentation transcript:

Future of HIV vaccines Charlotta Nilsson Folkhälsomyndigheten Public Health Agency of Sweden Charlotta Nilsson 141117

A vaccine with 50% protective efficacy would have an effect % change in the HIV-positive population over 20 years Gray et al AIDS 2003, 17:1941-1951 Rakai, Uganda as an example Charlotta Nilsson 141117

HIV vaccine Preventive (prophylactic) Therapeutic Charlotta Nilsson 141117

Presentation outline Charlotta Nilsson 141117

Immune response Blood Cell mediated immune response Antibody mediated immune response Charlotta Nilsson 141117

Immune response- cytotoxic T cells Charlotta Nilsson 141117

Immune response-Antibodies Isotype Structure Passes the placenta Bind mast cells Bind phagocytes Activates complement Other IgM - + First antibody to develope IgD B-cell receptor. IgG Opsonization and ADCC. Four subclasses; IgG1, IgG2, IgG3, IgG4. IgE Allergic reactions IgA   Two subclasses; IgA1, IgA2. Available as secretory IgA (sIgA) Charlotta Nilsson 141117

Immune mechanisms Helper T cells (CD4+) Cytotoxic T celler (CD8+) Antibodies produced by B-cells Soluble proteines (cytokines, chemokines) CD8+ Charlotta Nilsson 141117

HIV-1 Vi har valt att inkludera gener som kodar för flera delar av HIV – detta föra tt bredda svaret och inte förlika sig på svar mot endsast en komponent. Vi har valt att inkludera både interna struktirella delar av HIV .nukleokapsiden, ytproteinerna samt några av de enzymer HIV kodar för. Vi har designat vaccinet med målet att vaccinera I östra afrika och mer specifikt I Tanzania, vi har därför valt att inkludera gener från HIV av olika subtyper. Så här ser vårt vaccin ut, sju olika plasmider som kodar för de proteiner jag talade om. Vår rekombinanta virusvektor är som sagt modified vaccinia ankara och det kodar också för tre olika delar av HIV. Charlotta Nilsson 141117

Transmitted as viral particles or as cell associated virus Charlotta Nilsson 141117

HIV infects and destroys immune cells Charlotta Nilsson 141117

HIV infects and destroys immune cells Natural infection Charlotta Nilsson 141117

HIV integrates in the host cell genome and evades the immune system Charlotta Nilsson 141117

HIV Env variability Charlotta Nilsson 141117

HIV Env variability Charlotta Nilsson 141117

Vaccine strategies Live attenuated Killed/ inactivated Protein/ subcomponents Recombinant protein Yellow fever Polio Diftheria Human papiloma virus (HPV) Tuberculosis (BCG) Cholera Pertussis Hepatitis B Measles Hepatitis A Tetanus Mumps Influenza Haemophilus influenzae type B (Hib) Rubella Pneumococci Charlotta Nilsson 141117

Model for the effectiveness of a live attenuated vaccine Virus- load Limit for disease progression vaccine- effect virus- detection Vaccine- induced disease protection no vaccine effect Time Charlotta Nilsson 141117

What type of HIV-vaccine? A live attenuated vaccine is too dangerous Inactivated virus is also too dangerous Purified virus proteins have been shown to be ineffective New vaccine concepts are needed RNA Charlotta Nilsson 141117

HIV vaccine candidates new concepts Live recombinant virus HIV “harmless” virus “harmless” hybrid virus expressing HIV gene products Charlotta Nilsson 141117

Examples of live recombinant vaccines used as HIV vaccine candidates Poxvirus Vaccinia Modified vaccinia Ankara Attenuated vaccinia (NYVAC) Avipox (canarypox, ALVAC) Adenovirus Semliki Forest virus Venuzuelan Equine Encephalitis virus Charlotta Nilsson 141117

An single immune correlate of protection has not been identified T-helper cells (CD4+ T celler) Ranki et al. AIDS 1989; 3:63-69 (exposed uninfected individuals) Clerici et al. J Infect Dis 1992;165:1012-1019 (exposed uninfected individuals) Cytotoxic T cells (CD8+ T celler) Betts et al. Blood 2006, 107: 4781-4789 (long-term non-progressors) Langlade-Demoyen etal. J Clin Invest 1994; 93:1293-1297 (exposed uninfected individuals) Schmitz et al. Science 1999, 283:857-860 (non-human primates) Jin et al. J Exp Med 1999, 189: 991-998 (non-human primates) Antibodies Rasmussen et al. AIDS 2002, 16:829-838 (non-human primates) Baba et al. Nat Med 2000, 6: 200-206 (non-human primates) Mucosal IgA and serum IgA Devito et al. AIDS 2000;14:1917-1920 (exposed uninfected individuals) Natural killer cells (NK cells) Jennes et al. J Immunol 2006; 177: 6588-6592 (exposed uninfected individuals) Charlotta Nilsson 141117

A single immune correlate of protection has not been identified Exposed uninfected individuals Long-term non progressors or elite controllers Animal models (mouse, non-human primates) Clinical efficacy trials are needed! Charlotta Nilsson 141117

Obstacles in finding a safe and effective prophylactic HIV vaccine HIV targets immune cells The HIV genome integrates in the host cells, thereby avoiding the immune response Transmitted as virus particles and/or as cell-associated virus HIV is variable, especially with regards to the envelope Traditional vaccine strategies are not applicable A singel immune correlate of protection has not been identified Charlotta Nilsson 141117

The ideal prophylactic vaccine Induce a broad immune response Induce a durable immune response Systemic and local (mucosal) immunity Protect against both free virus particles and virus infected cells Excellent safety profile Simple and cheap to produce Have a simple vaccination regimen Charlotta Nilsson 141117

HIV vaccine Prevent infection (sterilizing immunity) Chronic controlled infection Lower/low viral load Prevent/delay disease progression Prevent/reduce transmission Charlotta Nilsson 141117

HIV-vaccine candidate look like? What would your HIV-vaccine candidate look like? How would you go about testing it? Charlotta Nilsson 141117

Clinical vaccine trials Phase I 10s with low risk Safety and immunogenicity 1-2 years Phase II 100s with low risk Phase III 5000-20000 High risk groups Efficacy trial, needed for product registration 3-5 years Test-of- concept 3000 high risk groups Efficacy trial, in preparation for possible phase III trial 2-3 years

HIV vaccine studies (www.iavi.org) Charlotta Nilsson 141117

Completed phase III clinical HIV vaccine trials Recombinant protein/peptide 2 Live recombinant pox virus + protein 1 DNA prime + recombinant Adeno virus 1 Charlotta Nilsson 141117

RV144, ”the Thai trial”, a phase III HIV vaccine trial AIDS Vaccine 09 conference Supachai Rerks-Ngarm, Ministry of Public Health, Nonthaburi, Thailand Nelson Michael, US Military HIV Research program, Rockville, USA Mark de Souza, US Military HIV Research program/AFRIMS, Bankok, Thailand Charlotta Nilsson 141117

Background Phase I/II trial testing AIDSVAX B/E (n=92) J Aquir Immune Defic Syndr 2004;37:1160-1165 Phase I/II trial testing ALVAC-HIV (vCP1521) and AIDSVAX B/E (n=133) J Infect Dis 2004;190:702-6 Phase I/II trial testing ALVAC-HIV (vCP1521) prime with oligomeric gp160 (92TH023/LAI/DID) or bivalent gp120 (AIDSVAX B/E) boost (n=130) J Aquir Immune Defic Syndr 2007;46:48-55 Charlotta Nilsson 141117

Background 1. Phase III trial testing recombinant gp120 AIDSVAX B/B (n=5403) J Infect Dis 2005;191:654-65 2. Phase III trial testing AIDSVAX B/E (n=2546) J Infect Dis 2006;194:1661-71 3. Phase III trial testing ALVAC-HIV (vCP1521) and AIDSVAX B/E ( n=16402) N Engl J Med 2009;361 Charlotta Nilsson 141117

RV144- Volunteers 18-30 y old Raygong and Chon Buri Provinses in 26676 assessed for eligibility 128 were excluded 26548 were tested for HIV 17350 underwent clinical screeening 947 were excluded 16402 underwent randomization 7 were HIV –positive on PCR 5 received vaccine 2 received placebo 16395 did not have HIV infection 8179 received vaccine 8198 received placebo 6176 were included in per-protocol analysis 6366 were included in per-protocol analysis Intention-to-treat 18-30 y old Raygong and Chon Buri Provinses in Thailand 8780 withdrew 418 had HIV infection Modified intention-to-treat Rerks-Ngarm S et al. N Engl J Med 2009;10.1056/NEJMoa0908492

RV144-Vaccines ALVAC-HIV (vCP1521) AIDSVAX B/E Canarypox vaccine developed by Virogenetics Corporation and producerd by Sanofi Pasteur. Gag and Pro of subtype B (LAI) gp120 of subtype E (CRF01_AE ) gp41 of subtype B (LAI) AIDSVAX B/E Bivalent gp120 vaccine produced originally by Genentech, Inc., further developed by VaxGen, Inc. Subtyp E from HIV-1CM244 300mg Subtyp B from HIV-1MN 300mg Alum adjuvant 600mg Charlotta Nilsson 141117

RV144- Vaccination scheme 4 12 24 ALVAC AIDSVAX B/E weeks Follow-up: every 6 months for 3 years Charlotta Nilsson 141117

RV144-endpoint HIV-1 infection Early primary viremia Serology Enzyme immunoassay Western blotting Molecular biology techniques Amplicor HIV Monitor assay (Roche) Procleix HIV discriminatory assay (Novartis) CD4+ T cell determination Three determinations of HIV-1 RNA within 6 weeks of seroconversion -> mean viral load Charlotta Nilsson 141117

Protective efficacy: 26.4% (95% CI, -4 to 47.9;P=0.08) RV144- resutat Kaplan-Meier Cumulative Rates of Infection, According to Type of Analysis Rerks-Ngarm S et al. N Engl J Med 2009;10.1056/NEJMoa0908492 Protective efficacy: 26.4% (95% CI, -4 to 47.9;P=0.08) RV144- resutat 26.2% (95%CI, -13.3 to 51.9;P=0.16) Figure 2. Kaplan-Meier Cumulative Rates of Infection, According to Type of Analysis. The vaccination regimen was completed approximately 6 months after the first dose was administered. In the intention-to-treat analysis involving 16,402 subjects, the vaccine efficacy was 26.4% (95% confidence interval [CI], -4.0 to 47.9; P=0.08) (Panel A). In the per-protocol analysis involving 12,542 subjects, the vaccine efficacy was 26.2% (95% CI, -13.3 to 51.9; P=0.16) (Panel B). In the modified intention-to-treat analysis involving 16,395 subjects (excluding 7 subjects who were found to have had HIV infection at baseline), the vaccine efficacy was 31.2% (95% CI, 1.1 to 51.2; P=0.04) (Panel C). 31.2% (95%CI, 1.1 to 51.2;P=0.04) Charlotta Nilsson 141117

RV144- immune response Substudy of 200 volunteers (vaccinated vs. placebo, 4:1) Cell mediated immune response Interferon-g ELISpot (subtype E-Env, B-Gag) Intracellular cytokine staining (IFN-g/IL2) Lymfocytproliferation assay (3H-thymidine uptake) Antibody mediated immune response ELISA-gp120 HIV-1MN, gp120 HIV-1CM244, p24 Gag (subtype B) Charlotta Nilsson 141117

Immune response at the time of trial initiation and 12 months after vaccinations Rerks-Ngarm S et al. N Engl J Med 2009;10.1056/NEJMoa0908492 RV144-results Geometric mean Ab titer: gp120MN 31207 gp120A244 14558 p24 138 Median SI: Gp120MN 24 gp120A244 32 p24 4 Table 3. Immunogenicity Analyses at Baseline and 12 Months. Charlotta Nilsson 141117

RV144-conclusion ”This ALVAC-HIV and AIDSVAXB/E vaccine regimen may reduce the risk of HIV infection in a community-based population with largely heterosexual risk” ”Vaccination did not affect the viral load or CD4+ count in subjects with HIV infection” ”Although the results show only modest benefit, they offer insight for future research” http://www.hivvaccineenterprise.org/conference_archive/2009/webcasting.html Charlotta Nilsson 141117

Continued work with RV144 Identify correlates of protection Improve the vaccine to give better protection than the 60 % protective efficacy that was seen after 1 year of follow-up. Nelson Michael AIDS Vaccine 2010 Charlotta Nilsson 141117

RV144- correlates of infection risk In pilot studies, 17 antibody and cellular assays met pre-specified criteria, of which 6 were chosen for primary analysis Binding of plasma IgA to Env Avidity of IgG antibodies to Env Antibody-dependent cellular cytotoxicity HIV-1 neutralizing antibodies The binding of IgG antibodies to variable regions 1 and 2 (V1V2) of gp120 Env The level of Env-specific CD4+ T cells Charlotta Nilsson 141117

RV144- correlates of infection risk Assays were performed in samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after the final vaccination. 1. Binding of IgG antibodies to variable region 1 and 2 (V1V2) correlated inversely with the rate of HIV infection. 2. The binding of plasma IgA antibodies to Env correlated directly with the rate of infection. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potential protective antibodies. Haynes BF, Gilbert PB, McElrath MJ, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 2012; 366:1275-86. Charlotta Nilsson 141117

HIVIS03 En phase I/II HIV vaccine study at Muhimbili University of Health and Allied Sciences och Muhimbili National Hospital, Dar es salaam, Tanzania 2007-2010

HIV multi-gene/multi-subtype vaccine 9% D 6% C 30% AC 34% CD ACD AD Tanzania p37 gag A gp160 env B p37 gag B gp160 env A RTmut B gp160 env C Vi har valt att inkludera gener som kodar för flera delar av HIV – detta föra tt bredda svaret och inte förlika sig på svar mot endsast en komponent. Vi har valt att inkludera både interna struktirella delar av HIV .nukleokapsiden, ytproteinerna samt några av de enzymer HIV kodar för. Vi har designat vaccinet med målet att vaccinera I östra afrika och mer specifikt I Tanzania, vi har därför valt att inkludera gener från HIV av olika subtyper. Så här ser vårt vaccin ut, sju olika plasmider som kodar för de proteiner jag talade om. Vår rekombinanta virusvektor är som sagt modified vaccinia ankara och det kodar också för tre olika delar av HIV. rev B Charlotta Nilsson 141117

MVA* / CMDR boost Subtype A Subtype E *Modified Vaccinia Ankara Developed by P Earl and B Moss, Laboratory of Viral Diseases, NIAID, NIH Produced by Walter Reed Army Institute of Research Deletion III Deletion II MVA gag protease / RT gp150 env Subtype E CM235 Subtype A CM240 mH5 Charlotta Nilsson 141117 *Modified Vaccinia Ankara 46

HIVIS Bioject immunization Injections are performed in the area of the deltoid muscle in both right and left arm. Even thou we have to give up to five shots at each immunization with the Bioject, the injections have been well tolerated and usually commented by the voluntaries as less painful than regular needle injections. Charlotta Nilsson 141117

HIVIS03 Study Objectives To assess safety and immunogenicity of a HIV-1 plasmid DNA-MVA prime boost vaccine candidate* To build expertise and capacity in evaluating HIV vaccine candidates in Tanzania *Previously underwent phase I trial in Sweden with excellent safety and immunogenicity results. JID 2008, Nov 15. Charlotta Nilsson 141117

Between >18 and <40 years of age HIV negative HIVIS03 Volunteers were recruited among police officers in Dar es Salaam Inclusion criteria Informed consent Between >18 and <40 years of age HIV negative Clinically healthy with normal laboratory values At low risk of acquiring HIV Charlotta Nilsson 141117 49

Baraza at Police station Charlotta Nilsson 141117 50

HIVIS03 Study Design RCT, conducted 2007 to 2012 Arm No. DNA immunization MVA boost I 20 DNA IM by Biojector (3.8 mg) MVA 108 pfu IM II DNA ID by Biojector (1.0 mg) IIIa 10 Saline IM by Biojector Saline IM IIIb Saline ID by Biojector Months 1 3 9 21 Recombinant MVA/Placebo Plasmid DNA/ Placebo Charlotta Nilsson 141117

HIVIS03 Summary Well tolerated. Induces Broad and Potent Immune Responses (Bakari et al., Vaccine; 2011) Id DNA immunization more efficient prime than Im. Balanced CD4 vs CD8 and Gag vs Env responses. Broadly cross-reactive and persistent lymphocyte proliferation assay responses. All vaccinees serologically reactive after 2nd MVA. Functional antibodies in up to 83% of the vaccinees In summary, the results with the WP 1 of TMV-I project show that the DNA-MVA vaccine was……………………………………… Charlotta Nilsson 141117

HIV vaccines New developments Delivery of DNA plasmids Bioject®ZetaJet™ Ability to deliver to all three injection depths: Intramuscular, subcutaneous or intradermal  Injection volumes range from 0.05mL to 0.5mL

HIV vaccines New developments The DNA and MVA vaccines are given in combination with HIV envelope protein (Env) DNA vaccines are given in combination with electroporation. Total puls length: 0,27 seconds Tid Volt 2x450V 8x110V Charlotta Nilsson 141117

- + The current opens pores in the cell Before electroporation Picture courtesy of Inovio Before electroporation Directly after electroporation. After electroporation Cell - + Electrode Plasmid Charlotta Nilsson 141117 Roos et al, CytoPulse

Addition of gp140/GLA to MVA boost Studies and Timelines Study sites Designation  N  Vac. (placebo) 2004 2006 2007 2009 2010 2011 2012 2013 Stockholm HIVIS 01/02/05 40 Phase I DNAx3 1st MVA Published 2ndMVA   Dar es Salaam HIVIS 03/06 40 (+20) Phase I/II 3DNA 1st MVA 2nd MVA Vaccine 29 (2011);8417-28 3rd MVA Analysis ongoing Dar + Mbeya TaMoVac I (Tz) 108 (+12) Phase II MVAx2   gp140/GLA Maputo TaMoVac I (Moz) 20 (+4) MVAx2 Stockholm HIVIS 07 27 Phase 1 +/-elpor.* +/-gp140 Dar+Mbeya+ TaMoVac II 180 (+18)  DNAx3 +/- elpor* Addition of gp140/GLA to MVA boost Subsequently, a number of studies have been or are being conducted in Tanzania, Sweden and Mozambique as summarised in this slide For the sake of this presentation I will focus on studies in Tanzania and Mozambique; and furthermore I will dwell on Immunogenicity data only. Suffice to say here that so far we have not observed a safety issue of concern in all these trials *elpor = i.d. electroporation Finished; Ongoing; Planned

All-Collaborators Meeting, February 2011, Bagamoyo, Tanzania This picture is from a 2011 collaborators meeting where the Guest of Honour was HE the Ambassador of Sweden in Tanzania. This is part of networking, and these meetings are held annually All-Collaborators Meeting, February 2011, Bagamoyo, Tanzania 57 57

Summary Developing a prophylactic HIV vaccine has proven to be difficult. No singel correlate of protection is known but we have evidence supporting development of vaccine candidates that induce both cell-mediated immunity and functional antibodies. Several HIV vaccine candidates are being tested in large efficacy trials It is a collaborative effort! Charlotta Nilsson 141117

When do we have an HIV vaccine? Discovery Vaccine for use Time until a vaccine was available (years) Smallpox - 1796 Measles 1953 1963 10 Polio 1908 1955, 1961 47 Mumps 1934 1948, 1967 12 Rubella 1938 1969 31 Varicella 1954 1988 34 Hepatitis B 1965 1981 16 Hepatitis A 1973 1995 22 HIV 1983 ??? ?? When can we expect to have a functionally working vaccine in the market? Can we learn from history or is HIV so fundamentally different that it will take another generation before we have the first vaccine? I will leave you with this question. Hopefully we will live long enough to answer this question. Charlotta Nilsson 141117

Tack! Thank you! Asante sana! Obrigada! charlotta.nilsson@folkhalsomyndugheten.se charlotta.nilsson@ki.se Charlotta Nilsson 131118