SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität.

Slides:



Advertisements
Similar presentations
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Advertisements

From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Www-f1.ijs.si/~bonca SNS2007 SENDAI Spectral properties of the t-J- Holstein model in the low-doping limit Spectral properties of the t-J- Holstein model.
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Emergent Majorana Fermion in Cavity QED Lattice
Spin dynamics of stripe-ordered layered nickelates Andrew Boothroyd Department of Physics, Oxford University Ni 2+ (S=1) Ni 3+ (S=1/2) Cu 2+ (S=1/2) Cu.
Physics “Advanced Electronic Structure” Lecture 7.2. Calculations of Magnetic Interactions Contents: 1.Non-collinear SDFT. 2.Applications to Magnetic.
Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September 13.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
SPIN STRUCTURE FACTOR OF THE FRUSTRATED QUANTUM MAGNET Cs 2 CuCl 4 March 9, 2006Duke University 1/30 Rastko Sknepnek Department of Physics and Astronomy.
Atomistic Modelling of Ultrafast Magnetization Switching Ultrafast Conference on Magnetism J. Barker 1, T. Ostler 1, O. Hovorka 1, U. Atxitia 1,2, O. Chubykalo-Fesenko.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Calculation of dynamical properties using DMRG Karen A. Hallberg Centro Atómico Bariloche and Instituto Balseiro, Bariloche, Argentina Leiden, August 2004.
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
DYNAMICAL PROPERTIES OF THE ANISOTROPIC TRIANGULAR QUANTUM
cond-mat/ , cond-mat/ , and to appear
Kinetic coefficients of metals ablated under the action of femtosecond laser pulses. Yu.V. Petrov*, N.A. Inogamov*, K.P. Migdal** * Landau Institute for.
Quantum Antiferromagnetism and High T C Superconductivity A close connection between the t-J model and the projected BCS Hamiltonian Kwon Park.
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Quantum Master Equation Approach to Transport Wang Jian-Sheng 1.
A. Krawiecki , A. Sukiennicki
High-temperature series expansion study Kok-Kwei Pan ( 潘國貴 ) Physics Group, Center of General Education Chang Gung University ( 長庚大學 ) No. 259, Wen-Hua.
Integrable Models and Applications Florence, September 2003 G. Morandi F. Ortolani E. Ercolessi C. Degli Esposti Boschi F. Anfuso S. Pasini P. Pieri.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Critical Phenomena in Random and Complex Systems Capri September 9-12, 2014 Spin Glass Dynamics at the Mesoscale Samaresh Guchhait* and Raymond L. Orbach**
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
High-accuracy ab initio calculation of metal quadrupole-coupling parameter Lan Cheng, John Stanton, and Jürgen Gauss Department of Chemistry, University.
University of California DavisKashiwa, July 27, 2007 From LDA+U to LDA+DMFT S. Y. Savrasov, Department of Physics, University of California, Davis Collaborators:
On microscopic description of the gamma-ray strength functions S. Kamerdzhiev, D. Voitenkov Institute of Physics and Power Engineering, Obninsk, Russia.
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
Neutron Scattering Studies of Tough Quantum Magnetism Problems
The Problem of Constructing Phenomenological Equations for Subsystem Interacting with non-Gaussian Thermal Bath Alexander Dubkov Nizhniy Novgorod State.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Engineering the Dynamics Engineering Entanglement and Correlation Dynamics in Spin Chains Correlation Dynamics in Spin Chains [1] T. S. Cubitt 1,2 and.
Finite Temperature Spin Correlations in Quantum Magnets with a Spin Gap Collin Broholm* Johns Hopkins University and NIST Center for Neutron Research *supported.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
LIT-JINR Dubna and IFIN-HH Bucharest
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Eliashberg Function in ARPES measurements Yu He Cuperates Meeting Dec. 3, 2010.
2008 Renormalization-group investigation of the 2D Hubbard model A. A. Katanin a,b a Institute of Metal Physics, Ekaterinburg, Russia b Max-Planck Institut.
Chiral symmetry breaking and Chiral Magnetic Effect in QCD with very strong magnetic field P.V.Buividovich (ITEP, Moscow, Russia and JIPNR “Sosny” Minsk,
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Electronic structure calculation codes on the Asgard and Gonzales clusters Institute of Metal Physics, RAS Ural State Technical University - UPI Alexey.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
Scaling and the Crossover Diagram of a Quantum Antiferromagnet
Localized Magnetic States in Metals Miyake Lab. Akiko Shiba Ref.) P. W. Anderson, Phys. Rev. 124 (1961) 41.
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
Point contact properties of intermetallic compound YbCu (5-x) Al x (x = 1.3 – 1.75) G. PRISTÁŠ, M. REIFFERS Institute of Exp. Physics, Center of Low Temperature.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
String excitations in quantum antiferromagnets and photoelectron spectroscopy E. Manousakis Physics Department, Florida State University and Physics Department,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computational.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Measurement of parity-violating asymmetries in the reactions of light nuclei with polarized neutrons ( 6.
Quantum Phase Transition of Light: A Renormalization Group Study
Interplay of disorder and interactions
Ab initio calculation of magnetic exchange parameters
Presentation transcript:

SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität Augsburg, Augsburg, Germany b Institute of Metal Physics, Ekaterinburg, Russia

Magnetic structure of La 2 CuO 4 Heisenberg model Ring-exchange term i j kl i j Appears in next-to-leading order in t/U expansion of Hubbard model First introduced in connection with 3 He (see, e.g., M.Roger et al, Rev.Mod.Phys 55 1 (1983))

La 2 CuO 4 Experimental spin-wave dispersion at T=10K (R.Coldea et al, Phys. Rev. Lett. 86, 5377 (2001))

The Heisenberg model with ring exchange Previously estimated values of parameters [1]: J=146 meV; J´=J´´=0.02J; J  <10 -3 J, J [] /J=0.41 The derivation of effective spin model from three-band Hubbard model [2] led to estimate J [] /J=0.11 [1] R.Coldea et al, Phys. Rev. Lett. 86, 5377 (2001) [2] E. Müller-Hartmann and A. Reischl, cond-mat/

Calculational steps The Dyson-Maleev representation for spin operators Calculation of renormalized spin-wave spectrum The factors {   } are the renormalization factors Solution of the self-consistent equations

La 2 CuO 4

The results of fitting of experimental data Parameters of the model J = meV, J = J  = 0.025J, J [] = 0.24J Groud-state magnetization Spin stiffness and the perpendicular susceptibility  s = 23.8 meV, c = 206meV,   = 4.8·10 -5 K -1  Earlier estimate from fitting the spin-spin correlation length  (T) at T>T N is  s = 23.9 meV Renormalization factors Z c = 0.96, Z  = 0.63, Z  = 0.68 Interlayer coupling J  /J = 1.0 ·10 -3 The Neel temperature T N = 328 K  T N exp = 325 K

Conclusions The exchange parameters of La 2 CuO 4 are determined with account of quantum fluctuations from the best fit to magnon spectrum The values of exchange parameters are in good agreement with other experimental data on La 2 CuO 4.