Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.

Slides:



Advertisements
Similar presentations
Theory of probing orbitons with RIXS
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Neutron and X-ray Scattering Studies of Spin, Charge and Orbital Order in TM Oxides Andrew Boothroyd Department of Physics, Oxford University magnetization.
Spin dynamics of stripe-ordered layered nickelates Andrew Boothroyd Department of Physics, Oxford University Ni 2+ (S=1) Ni 3+ (S=1/2) Cu 2+ (S=1/2) Cu.
Hole-Doped Antiferromagnets: Relief of Frustration Through Stripe Formation John Tranquada International Workshop on Frustrated Magnetism September 13.
Study of Collective Modes in Stripes by Means of RPA E. Kaneshita, M. Ichioka, K. Machida 1. Introduction 3. Collective excitations in stripes Stripes.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
SPIN STRUCTURE FACTOR OF THE FRUSTRATED QUANTUM MAGNET Cs 2 CuCl 4 March 9, 2006Duke University 1/30 Rastko Sknepnek Department of Physics and Astronomy.
Electronic structure of La2-xSrxCuO4 calculated by the
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Interplay between spin, charge, lattice and orbital degrees of freedom Lecture notes Les Houches June 2006 lecture 3 George Sawatzky.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Anomalous excitation spectra of frustrated quantum antiferromagnets John Fjaerestad University of Queensland Work done in collaboration with: Weihong Zheng,
DYNAMICAL PROPERTIES OF THE ANISOTROPIC TRIANGULAR QUANTUM
What Pins Stripes in La2-xBaxCuO4? Neutron Scattering Group
Antiferomagnetism and triplet superconductivity in Bechgaard salts
SO(5) Theory of High Tc Superconductivity Shou-cheng Zhang Stanford University.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Blaubeuren 2006 Relaxation mechanisms in exchange coupled spin systems – I Line broadening and the Kubo-Tomito approach Joachim Deisenhofer Université.
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Neutron Scattering of Frustrated Antiferromagnets Satisfaction without LRO Paramagnetic phase Low Temperature phase Spin glass phase Long range order Spin.
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
An Introduction to Fe-based superconductors
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
1 Unconventional Magnetism: Electron Liquid Crystal State and Dynamic Generation of Spin-orbit Coupling Congjun Wu C. Wu and S. C. Zhang, PRL 93,
Neutron Scattering Studies of Tough Quantum Magnetism Problems
Title: Multiferroics 台灣大學物理系 胡崇德 (C. D. Hu) Abstract
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Inelastic Scattering: Neutrons vs X-rays Stephen Shapiro Condensed Matter Physics/Materials Science February 7,2008.
Emergent Nematic State in Iron-based Superconductors
Scaling and the Crossover Diagram of a Quantum Antiferromagnet
Spin Waves in Metallic Manganites Fernande Moussa, Martine Hennion, Gaël Biotteau (PhD), Pascale Kober-Lehouelleur (PhD) Dmitri Reznik, Hamid Moudden Laboratoire.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Magnon Another Carrier of Thermal Conductivity
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY 1 Polarized inelastic neutron scattering in the CMR manganite La 0.70 Ca 0.30 MnO 3 *Center.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität.
Neutron Scattering of Frustrated Antiferromagnets Satisfaction without LRO Paramagnetic phase Low Temperature phases Spin glass phase Long range order.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Spin Wave Model to study multilayered magnetic materials Sarah McIntyre.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
1 Two dimensional staggered current phase Congjun Wu Reference: C. Wu, J. Zaanen, and S. C. Zhang, Phys. Rev. Lett. 95, (2005). C. Wu and S. C.
One Dimensional Magnetic Systems Strong Fluctuations in Condensed Matter Magnetism in one dimension Pure systems Doped systems Magnetized states Conclusions.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
Evolution of the orbital Peierls state with doping
Solving Impurity Structures Using Inelastic Neutron Scattering Quantum Magnetism - Pure systems - vacancies - bond impurities Conclusions Collin Broholm*
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Evolution of Spin-Orbital-Lattice Coupling in RVO3 Perovskites
Dec , 2005 The Chinese University of Hong Kong
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Image © NPG Rogério de Sousa
M. Hennion, S. Petit, F. Moussa, D. Lamago LLB-Saclay
Magnetic and Raman response properties in La2CuO4
B4 Single crystal growth of tunable quantum spin systems
Possible realization of SU(2)_2 WZNW Quantum Critical Point in CaCu2O3
with Masaki Oshikawa (UBC-Tokyo Institute of Technology)
Spin-lattice Interaction Effects in Frustrated Antiferromagnets
Neutron studies of iron-based superconductors
Presentation transcript:

Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian Gozar # G. Blumberg & B. Dennis CRIEPI, Japan # A. Gozar et al. Phys. Rev. Lett. ‘04

What is (detwinned) La 2-x Sr x CuO 4 ? x(Sr) T(K) AF SC LTO (orthorhombic) HTT (tetragonal) 0.02 adapted from B. Keimer et al. PRB 46, ‘92 HTT a b b a Y.Horibe PRB ‘00 LTO b = 5.4 A b - a ~ 0.05 A R.J. Birgeneau PRL ‘87

Swapping the Crystal Axes with Magnetic Field A.N. Lavrov Nature ‘02 room temperature 1 mm c a(b) bb La 1.99 Sr 0.01 CuO 4 T N ~ 210K  strong magneto-elastic coupling  net ferromagnetic moment ? H ~ 14 T H In a magnetic field H // CuO 2 planes the b orthorhombic axis follows the direction of the external field

Outline  Long Range Antiferromagnetic Order in La 2-x Sr x CuO 4  Magnetic Field Dependent Raman Data in La 2-x Sr x CuO 4 x(Sr)  0.01  low energy magnetic excitations ► anisotropic dispersions of spin wave gaps ► in H  11 T  observation of magnetic field induced spin ordering (H // b-axis)  Strong Lattice and Electronic Anisotropies ► detwinned La 2-x Sr x CuO 4 x(Sr)  0.03 ► CuO 6 tilt disorder at x(Sr) = 1/8 doping in (La,Nd) 2-1/8 Sr 1/8 CuO 4

Antiferromagnetic Order in La 2-x Sr x CuO 4 (x  0.02) CuO 2 plane c b JJ  d (3/4,1/4) R. Coldea PRL ’01 (1/2,0)(0,0) Excitations 0k  (k)  XY ~ m(2  J) 1/2  DM ~ md a b c Cu 2+ Spin Hamiltonian B. Keimer Z. Phys ’93 2D Heisenberg J ~ 140 meV ‘XY’ exchange anisotropy  / J ~ ‘DM’ Dzyaloshinskii-Moriya d / J ~ 7  only in the LTO phase

Spin-Wave Gaps in La 2 CuO 4 0k  (k)  XY ~ m(2  J) 1/2  DM ~ md Neutron Scattering T = 80 K C.J. Peters PRB ’88 ~ 2 meV Raman Scattering 1 meV ~ 8 cm -1 La 2 CuO 4

0k  (k)  XY ~ m(2  J) 1/2  DM ~ md Neutron Scattering T = 80 K Raman Scattering C.J. Peters PRB ’88 1 meV ~ 8 cm -1 Spin-Wave Gaps in La 2 CuO 4 La 2 CuO 4 CuO 2 plane c b H T. Thio PRB ’90

Spin-Wave Gaps in La 2 CuO 4 Raman Scattering 1 meV ~ 8 cm -1 Experiment b 2D Spin-Wave Model  DM = 17.0 cm -1 XY DM CuO 2 plane c

Spin-Wave Gaps in La 2 CuO 4 Raman Scattering 1 meV ~ 8 cm -1 Experiment b

Magnetic Field Induced Raman Modes in La 2 CuO 4 T (K) 0 H // b

(A) T = 10 K ► Spin-Wave calculation is consistent (up to 5%) with the dispersion of the XY gap B. Keimer Z. Phys. ’93 ►  XY ~ 5.5 meV (44 cm -1 ) ► For H // b  d  DM / d H b < 0  one expects a magnetic field induced transition c (B) T = 300 K ► T N (La 2 CuO 4 ) = 310 K & dT N / dH b ~ -1K/T CuO 2 plane c b H = 0 strong H // b Field Induced Spin Reorientation

(A) T = 10 K ► Spin-Wave calculation is consistent (up to 5%) with the dispersion of the XY gap (B) T = 300 K B. Keimer Z. Phys. ’93 ►  XY ~ 5.5 meV (44 cm -1 ) ► For H // b  d  DM / d H b < 0  one expects a magnetic field induced transition ► T N (La 2 CuO 4 ) = 310 K & dT N / dH b ~ -1K/T c strong H // b 300 K d ≠ 0  = 0  DM is this a ‘regular’ spin-flop like transition ? (continuous) spin reorientation in the (bc) plane

Field Induced Spin Reorientation T (K) 0 H // b T

Field Induced Spin Reorientation La 2 CuO 4 La 1.99 Sr 0.01 CuO 4 T N (La 1.99 Sr 0.01 CuO 4 ) = 210 K dT N / dH b ~ -4 K / T TNTN

La 1.99 Sr 0.01 CuO 4 T N (La 1.99 Sr 0.01 CuO 4 ) = 210 K dT N / dH b ~ -4 K / T ► I(T) peaked at TN ►  (T) > 0 at all temperatures  XY  DM Field Induced Spin Reorientation TNTN

La 1.99 Sr 0.01 CuO 4 T N (La 1.99 Sr 0.01 CuO 4 ) = 210 K dT N / dH b ~ -4 K / T TNTN H = 0 net ferromagnetic moment c b

Lattice & Electronic Anisotropy - La 2-x Sr x CuO 4 x = 0 Raman response (rel. units) T = 10 K (aa) (bb) x = 0.01 (aa) (bb) x = 0.03 Raman shift (cm -1 ) (aa) (bb) 12 La/Sr 21 c a b

Local Structure at x ~ 1/8 Sr Doping La/Sr 21 La 2-x-y Nd y Sr x CuO 4 T = 10 K 1 2 A. Gozar PRB ’03 (cc) polarization ► no signatures of charge super modulation in (cc) polarized Raman spectra - group theory for the LTO phase predicts 5 fully symmetric Raman active modes ► at 1/8 Sr doping there exists substantial disorder in the CuO 6 octahedra tilt pattern

Conclusions  Magnetic Excitations ► DM and XY anisotropy induced spin-wave gaps ► For fields H // b  observation of magnetic field induced spin reorientation  Low Energy Lattice & Electronic Dynamics ► detwinned La 2-x Sr x CuO4 x(Sr)  about 30% anisotropy in the electronic background - strong phononic anisotropy ► x(Sr) = 1/8 (La,Nd) 2-x Sr x CuO 4 - disorder in the local structure  lattice has to be taken into account when discussing possible spin or charge modulation in LaSrCuO