O. Straniero, L. Piersanti (Osservatorio di Teramo, INAF) R. Gallino (Universita’ di Torino) I. Dominguez (Univerdad de Granada) Light and heavy elements.

Slides:



Advertisements
Similar presentations
THE EFFECT OF 12 C(α,γ) 16 O ON WHITE DWARF EVOLUTION Pier Giorgio Prada Moroni Dipartimento di Fisica - Università di Pisa Osservatorio Astronomico di.
Advertisements

Why Galaxies care about Asymptotic Giant Branch stars S. Cristallo (INAF - Osservatorio Astronomico di Teramo) Collaborators: O. Straniero, R. Gallino,
S. CRISTALLO (1) O. Straniero (1) R. Gallino (2) L. Piersanti (1) (1) Osservatorio di TERAMO, INAF (2) Universita di Torino Sintesi di elementi leggeri.
Alessandro Chieffi (Istituto di Astrofisica Spaziale e Fisica Cosmica & INAF)
The origin of heavy elements in the solar system
Acceleration of GCR in stellar winds and the GCR 22 Ne/ 20 Ne source ratio N. Prantzos (Institut d’Astrophysique de Paris)
Carbon Enhanced Stars in the Sloan Digital Sky Survey ( SDSS ) T. Sivarani, Young Sun Lee, B. Marsteller & T. C. Beers Michigan State University & Joint.
Asymptotic Giant Branch. Learning outcomes Evolution and internal structure of low mass stars from the core He burning phase to the tip of the AGB Nucleosynthesis.
The importance of the remnant’s mass for VLTP born again times Marcelo Miguel Miller Bertolami Part of the PhD thesis work (in progress) under the supervision.
THE EFFECT OF ROTATION ON THE HYDROSTATIC AND EXPLOSIVE YIELDS OF MASSIVE STARS and Alessandro Chieffi INAF – Istituto di Astrofisica e Planetologia Spaziali,
Chemical evolution of Super-AGB stars The Giant Branches Lorentz Center, May 2009 Enrique García-Berro 1,2 1 Universitat Politècnica de Catalunya 2 Institut.
S-Process in C-Rich EMPS: predictions versus observations Sara Bisterzo (1) Roberto Gallino (1) Oscar Straniero (2) I. I. Ivans (3, 4) and Wako Aoki, Sean.
Branchings, neutron sources and poisons: evidence for stellar nucleosynthesis Maria Lugaro Astronomical Institute University of Utrecht (NL)
AGB star intershell abundances inferred from analyses of extremely hot H-deficient post-AGB stars Klaus Werner Institut für Astronomie und Astrophysik.
INAF-Osservatorio Astronomico di Padova Dipartimento di Astronomia, Università di Padova.
Supernovae of type Ia: the final fate of low mass stars in close bynary systems Oscar Straniero INAF – Oss. Astr. di Collurania (TE)
Astrophysical Reaction Rate for the Neutron-Generator Reaction 13 C(α,n) in Asymptotic Giant Branch Stars Eric Johnson Department of Physics Florida State.
Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 16 – Evolution of core after S-C instability Formation of red giant Evolution up.
ATON code for stellar evolution for stellar evolution Italo Mazzitelli (IAS - Rome) Francesca D’Antona (Observatory of Rome) Paolo Ventura (Observatory.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
S-Process in low metallicity Pb stars: comparison between new theoretical results and spectroscopic observations Sara Bisterzo (1) Roberto Gallino (1),
Evidence for Explosive Nucleosynthesis in the Helium Shell of Massive Stars from Cosmochemical Samples Bradley S. Meyer Clemson University.
Supernovae Oscar Straniero INAF – Oss. Astr. di Collurania (TE)
The massive zero metal stars: their evolutionary properties and their explosive yields. Alessandro Chieffi Istituto Nazionale di AstroFisica (Istituto.
Interesting News… Regulus Age: a few hundred million years Mass: 3.5 solar masses Rotation Period:
AGB stars Inma Dominguez Sergio Cristallo Oscar Straniero.
Origin of the elements and Standard Abundance Distribution Clementina Sasso Lotfi Yelles Chaouche Lecture on the Origins of the Solar Systems.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY Research:Stellar Burning – nuclear reactions with stable beams Explosive.
A New Technique to Measure ΔY/ΔZ A. A. R. Valcarce (UFRN) Main collaborators: J. R. de Medeiros (UFRN)M. Catelan (PUC) XXXVII SAB meeting Águas de Lindóia,
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
Inquiry into Low-Mass Star Survivors from the Early Universe and the Quest of First Generation Stars Masayuki Y. Fujimoto, Takuma Suda, Takanori Nishimura.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
14 N/ 15 N ratios in AGB C-stars and the origin of SiC grains Eurogenesis- Perugia Workshop, Nov 12-14, 2012 C. Abia R. Hedrosa (Granada) B. Plez (Montpellier)
18-19 Settembre 2006 Dottorato in Astronomia Università di Bologna.
Element abundances of bare planetary nebula central stars and the shell burning in AGB stars Klaus Werner Institut für Astronomie und Astrophysik Universität.
Setting the Stage for Evolution & Nucleosynthesis of Cluster AGB Stars Using Pulsation Analysis Devika Kamath Research School of Astronomy & Astrophysics.
The s-process in low metallicity stars Roberto Gallino (1) Sara Bisterzo (1) Oscar Straniero (2) I. I. Ivans (3, 4) F. Kaeppeler (5) (1) Dipartimento di.
Study of the s-process in low mass stars of Galactic disc metallicity
Advanced Burning Building the Heavy Elements. Advanced Burning 2  Advanced burning can be (is) very inhomogeneous  The process is very important to.
AIMS OF G ALACTIC C HEMICAL E VOLUTION STUDIES To check / constrain our understanding of stellar nucleosynthesis (i.e. stellar yields), either statistically.
Yields from single AGB stars Amanda Karakas Research School of Astronomy & Astrophysics Mt Stromlo Observatory.
LMS & IMS: their evolution, nucleosynthesis and dusty end S. Cristallo in collaboration with Oscar Straniero and Luciano Piersanti Osservatorio Astronomico.
Lecture 10 Nucleosynthesis During Helium Burning and the s-Process.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
1 AGB - Asymptotic Giant Branch wykład II Ryszard Szczerba Centrum Astronomiczne im. M. Kopernika, Toruń (56) ext. 27.
Nucleosynthesis in AGB Stars: the Role of the 18 O(p,  ) 15 N Reaction Marco La Cognata.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA.
Calculating PIEs with DJEHUTY Richard Stancliffe David Dearborn Stuart Heap Simon Campbell John Lattanzio.
Selected Topics in Astrophysics
18-19 Settembre 2006 Dottorato in Astronomia Università di Bologna.
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
The Abundances of Light Neutron- Capture Elements in Planetary Nebulae Nick Sterling NASA Goddard Space Flight Center June 19, 2007 Collaborators: Harriet.
“Why are massive O-rich AGB stars in our Galaxy not S-stars?” D. A. García-Hernández (IDC-ESAC, Madrid, Spain) In collaboration with P. García-Lario (IDC-ESAC),
Institute for Astronomy and Astrophysics, University of Tübingen, Germany June 29, 2005Planetary Nebulae as Astronomical Tools, Gdansk, Poland1 Light and.
M up Oscar Straniero & Luciano Piersanti INAF - Osservatorio di Teramo.
White Dwarfs in Globular Clusters O. Straniero, P. Prada Moroni, I. Dominguez, G. Imbriani, L. Piersanti G. De Marchi P. Bergeron.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
Is the 19 F problem in AGB C-stars solved ? C. Abia (UGR) S. Cristallo (UGR-INAF) K. Cunha (ORJ) P. de Laverny (OCA) I. Domínguez (UGR) K. Eriksson (Upssala)
The Future of White Dwarf Asteroseismology Travis Metcalfe (NCAR) NGC 1514 – Crystal Ball Nebula.
The Adventures of a Thermally Pulsating AGB Star
Mounib El Eid Impact of Key Nuclear Reactions
Mariko KATO (Keio Univ., Japan) collaboration with
The neutron capture cross section of the s-process branch point 63Ni
p-process in SNIa: new perspectives R. Gallino C. Travaglio
New Trends of Physics 2005, Hokkaido University, March 1
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
FASI EVOLUTIVE AVANZATE E FINALI DELLE STELLE:
Convection John Crooke 3/26/2019.
Nucleosynthesis in Pop III, Massive and Low-Mass Stars
Presentation transcript:

O. Straniero, L. Piersanti (Osservatorio di Teramo, INAF) R. Gallino (Universita’ di Torino) I. Dominguez (Univerdad de Granada) Light and heavy elements nucleosynthesis in low mass AGB Stars S. Cristallo (Osservatorio di Teramo, INAF)

OUTLINE  The formation of the 13 C pocket and the nuclear network  Light and heavy elements nucleosynthesis  Comparison with observations M=2M  AGB models (FRANEC Code) (Z=1.5x10 -2 ≡ Z  )(Z=1x10 -4 ) DISK STARSHALO STARS

s-process Z Β stability valley N Z Weak component (A<90) Main component (90<A<204) Strong component (204<A<209) AGB 13 C(α,n) 16 O reaction

How we treat the convection Schwarzschild criterion: to determine convective borders Mixing length theory: to calculate velocities inside the convective zones At the inner border of the convective envelope, we assume that the velocity profile drops following an exponentially decaying law v = v bce · exp (-d/β H p ) V bce is the convective velocity at the inner border of the convective envelope (CE) d is the distance from the CE H p is the scale pressure height β = 0.1 REF: Freytag (1996), Herwig (1997), Chieffi (2001), Straniero(2005), Cristallo (2001,2004,2006) WARNING: v bce =0 except during Dredge Up episodes

Gradients profiles WITHOUT exponentially decaying velocity profile Gradients profiles WITH exponentially decaying velocity profile CONVECTIVE ENVELOPE RADIATIVE He-INTERSHELL During a TDU episode

Formation of the 13 C-pocket M=2M  Z=ZZ=Z a)Maximum envelope penetration (during TDU); b) 12 C(p,  ) 13 N(β + ) 13 C and 13 C(p,  ) 14 N reactions; c) 22 Ne(p,  ) 23 Na; d)the envelope receeds.

The resulting pocket(s) ΔM~10 -3 M  13 C-pocket 23 Na-pocket 14 N-pocket

Variation of the 13 C-pocket pulse by pulse X( 13 C eff )=X( 13 C)-X( 14 N)*13/14 1 st 11 th 14 N strong neutron poison via 14 N(n,p) 14 C reaction

Calibration of the free parameter Different choices of the β parameter in the velocity profile algorithm β~0.1 1.Low mass AGB Stars 2.Treatment of convection Cristallo S. (PhD Thesis) H 12 C 14 N 13 C

About 500 isotopes linked by more than 700 reactions Reactions Reference (n,γ) (n,p) and (n,α) p and α captures β decays Bao & Kaeppeler Koehler,Wagemans NACRE Takahashi&Yokoi THE NETWORK

Solar metallicity

First TDU episode and consequent 13 C-pocket formation THE AGB PHASE M=2M  Z=Z  (Z=1.5x10 -2 ) Engulfment of the 13 C-pocket in the convective shell Radiative burning of 13 C(α,n) 16 O reaction C/O=1 C/O~2

Convective 13 C(α,n) 16 O 22 Ne(α,n) 25 Mg CONVECTIVE 13 C burning  60 Fe production t=0 at the 13 C-pocket ingestion in the convective shell Cristallo et al (astro-ph/ )

1 st TDU NO 60 Fe 1 st TDU 26 Al dredged up MAINLY from the He-intershell 2 nd TDU convective 13 C 60 Fe

Final distributions Comparison with post-process calculations POST PROCESS (Gallino et al. 1998) M=2M , Z=2 x (Straniero et al. 2003) 13 C pocket 1.Artificially introduced 2.Constant pulse after pulse 1.Artificially introduced 2.Constant pulse after pulse

Comparison with Galactic Carbon Stars Abia et al FRANEC ( 6 th pulse with TDU) Surface C/O=1 [ls/Fe]=([Sr/Fe]+[Y/Fe]+[Zr/Fe])/3[hs/Fe]=([Ba/Fe]+[La/Fe]+[Ce/Fe] +[Nd/Fe] +[Sm/Fe])/5 Z ~ Z 

Low metallicity

[C/Fe]=3.3 deX [F/Fe]=3.7 deX [ls/Fe] ~ 1.7 [Pb/hs] ~ 3.1 [hs/Fe] ~ 2.3 [Na/Fe]=2.8 deX Pulse by pulse surface enrichments (Z=10 -4 ) 1 10 last 5 … C-star Lead-star

Comparison with LEAD (Halo) stars (Van Eck et al. 2003) McClure & Woodsworth 1990 ORBITAL PARAMETERS REQUESTED DILUTION EXTRINSIC AGB? √

Future plans Exploring effects induced by C/O surface variations in models at low metallicities Performing new models with a reduced mass-loss Calculating more massive AGB stars (Al production) 1.M=3M  and Z=Z  (already done) 2.Currently running M=6M  and Z=Z  Yields and pulse by pulse [El/Fe] soon available on-line at: