Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

Slides:



Advertisements
Similar presentations
Introduction 1 Lecture 13 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
Advertisements

2: Transport Layer 31 Transport Layer 3. 2: Transport Layer 32 TCP Flow Control receiver: explicitly informs sender of (dynamically changing) amount of.
Introduction 1-1 Chapter 3 TCP Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 IC322 Fall 2013 Some.
Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
Transport Layer 3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 16 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
1 Transport Layer Lecture 9 Imran Ahmed University of Management & Technology.
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 11.
Transport Layer3-1 Summary of Reliable Data Transfer Checksums help us detect errors ACKs and NAKs help us deal with errors If ACK/NAK has errors sender.
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
Transport Layer3-1 TCP: Overview r full duplex data: m bi-directional data flow in same connection m MSS: maximum segment size r connection-oriented: m.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.
Introduction 1 Lecture 12 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter3_2.
Chapter 3 outline 3.1 transport-layer services
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 10.
TCP Details: Roadmap Data Flow Timeout/Retransmission
10/7/ /9/2003 TCP and Congestion Control October 7-9, 2003.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
Transport Layer Transport Layer: TCP. Transport Layer 3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
1 Announcement r Project 2 out m Much harder than project 1, start early! r Homework 2 due next Tuesday.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Previous Lecture r Reliable transfer protocols m Pipelined protocols Go-back N Selective repeat 1.
Announcement Project 2 out –Much harder than project 1, start early! Homework 2 due next Tu.
Chapter 3 Transport Layer
The Future r Let’s look at the homework r The next test is coming the 19 th (just before turkey day!) r Monday will finish TCP canned slides r Wednesday.
Transport Layer3-1 Data Communication and Networks Lecture 7 Transport Protocols: TCP October 21, 2004.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Announcement Homework 1 graded Homework 2 out –Due in a week, 1/30 Project 2 problems –Minet can only compile w/ old version of gcc (2.96). –Only tlab-login.
Transport Layer session 1 TELE3118: Network Technologies Week 9: Transport Layer Basics Some slides have been taken from: r Computer Networking:
EEC-484/584 Computer Networks Lecture 16 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Chapter 3 Outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection.
Transport Layer3-1 TCP sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from.
Network LayerII-1 RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part.
Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
2: Transport Layer 21 Transport Layer 2. 2: Transport Layer 22 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
1 End-to-End Protocols (UDP, TCP, Connection Management)
Transport Layer3-1 Transport Layer Our lives begin to end, the day we become silent about things that matter.
September 26 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
TCP. TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Connection-oriented transport: TCP. Transport Layer 3-2 TCP: Overview RFCs: 793,1122,1323, 2018, 2581  full duplex data:  bi-directional data flow in.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Transport Layer1 Goals: r understand principles behind transport layer services and protocols: m UDP m TCP Overview: r transport layer services r multiplexing/demultiplexing.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
CSEN 404 Transport Layer II Amr El Mougy Lamia AlBadrawy.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Chapter 3 Transport Layer
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 outline 3.1 transport-layer services
CS 1652 Jack Lange University of Pittsburgh
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data:
Introduction to Networks
CS1652 TCP Jack Lange University of Pittsburgh
Review: UDP demultiplexing TCP demultiplexing Multiplexing?
Chapter 3 Transport Layer
Transport Layer Goals: Overview:
Chapter 5 TCP Transmission Control
CSE 4213: Computer Networks II
CS4470 Computer Networking Protocols
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 Transport Layer
Lecture 5 – Chapter 3 CIS 5617, Spring2019 Anduo Wang
Presentation transcript:

Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer3-2 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles of reliable data transfer r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management r 3.6 Principles of congestion control r 3.7 TCP congestion control

Transport Layer3-3 TCP Round Trip Time and Timeout Q: how to set TCP timeout value? r longer than RTT m but RTT varies r too short: premature timeout m unnecessary retransmissions r too long: slow reaction to segment loss Q: how to estimate RTT?  SampleRTT : measured time from segment transmission until ACK receipt m ignore retransmissions  SampleRTT will vary, want estimated RTT “smoother”  average several recent measurements, not just current SampleRTT

Transport Layer3-4 TCP Round Trip Time and Timeout EstimatedRTT = (1-  )*EstimatedRTT +  *SampleRTT r Exponential weighted moving average r influence of past sample decreases exponentially fast  typical value:  = 0.125

Transport Layer3-5 Example RTT estimation:

Transport Layer3-6 TCP Round Trip Time and Timeout Setting the timeout  EstimtedRTT plus “safety margin”  large variation in EstimatedRTT -> larger safety margin r first estimate of how much SampleRTT deviates from EstimatedRTT: TimeoutInterval = EstimatedRTT + 4*DevRTT DevRTT = (1-  )*DevRTT +  *|SampleRTT-EstimatedRTT| (typically,  = 0.25) Then set timeout interval:

Transport Layer3-7 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles of reliable data transfer r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management r 3.6 Principles of congestion control r 3.7 TCP congestion control

Transport Layer3-8 TCP reliable data transfer r TCP creates rdt service on top of IP’s unreliable service r Pipelined segments r Cumulative acks r TCP uses single retransmission timer r Retransmissions are triggered by: m timeout events m duplicate acks r Initially consider simplified TCP sender: m ignore duplicate acks m ignore flow control, congestion control

Transport Layer3-9 TCP sender events: data rcvd from app: r Create segment with seq # r seq # is byte-stream number of first data byte in segment r start timer if not already running (think of timer as for oldest unacked segment)  expiration interval: TimeOutInterval timeout: r retransmit segment that caused timeout r restart timer Ack rcvd: r If acknowledges previously unacked segments m update what is known to be acked m start timer if there are outstanding segments

Transport Layer3-10 TCP sender (simplified) NextSeqNum = InitialSeqNum SendBase = InitialSeqNum loop (forever) { switch(event) event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data) event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number start timer event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } } /* end of loop forever */ Comment: SendBase-1: last cumulatively ack’ed byte Example: SendBase-1 = 71; y= 73, so the rcvr wants 73+ ; y > SendBase, so that new data is acked

Transport Layer3-11 TCP: retransmission scenarios Host A Seq=100, 20 bytes data ACK=100 time premature timeout Host B Seq=92, 8 bytes data ACK=120 Seq=92, 8 bytes data Seq=92 timeout ACK=120 Host A Seq=92, 8 bytes data ACK=100 loss timeout lost ACK scenario Host B X Seq=92, 8 bytes data ACK=100 time Seq=92 timeout SendBase = 100 SendBase = 120 SendBase = 120 Sendbase = 100

Transport Layer3-12 TCP retransmission scenarios (more) Host A Seq=92, 8 bytes data ACK=100 loss timeout Cumulative ACK scenario Host B X Seq=100, 20 bytes data ACK=120 time SendBase = 120

Transport Layer3-13 TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed Arrival of in-order segment with expected seq #. One other segment has ACK pending Arrival of out-of-order segment higher-than-expect seq. #. Gap detected Arrival of segment that partially or completely fills gap TCP Receiver action Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK Immediately send single cumulative ACK, ACKing both in-order segments Immediately send duplicate ACK, indicating seq. # of next expected byte Immediate send ACK, provided that segment starts at lower end of gap

Transport Layer3-14 Fast Retransmit r Time-out period often relatively long: m long delay before resending lost packet r Detect lost segments via duplicate ACKs. m Sender often sends many segments back-to- back m If segment is lost, there will likely be many duplicate ACKs. r If sender receives 3 ACKs for the same data, it supposes that segment after ACKed data was lost: m fast retransmit: resend segment before timer expires

Transport Layer3-15 Host A timeout Host B time X resend 2 nd segment Figure 3.37 Resending a segment after triple duplicate ACK

Transport Layer3-16 event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } else { increment count of dup ACKs received for y if (count of dup ACKs received for y = 3) { resend segment with sequence number y } Fast retransmit algorithm: a duplicate ACK for already ACKed segment fast retransmit

Transport Layer3-17 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles of reliable data transfer r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management r 3.6 Principles of congestion control r 3.7 TCP congestion control

Transport Layer3-18 TCP Flow Control r receive side of TCP connection has a receive buffer: r speed-matching service: matching the send rate to the receiving app’s drain rate r app process may be slow at reading from buffer sender won’t overflow receiver’s buffer by transmitting too much, too fast flow control

Transport Layer3-19 TCP Flow control: how it works (Suppose TCP receiver discards out-of-order segments)  spare room in buffer = RcvWindow = RcvBuffer-[LastByteRcvd - LastByteRead]  Rcvr advertises spare room by including value of RcvWindow in segments  Sender limits unACKed data to RcvWindow m guarantees receive buffer doesn’t overflow