Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, 19-21 Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.

Slides:



Advertisements
Similar presentations
Neutrinos and the stars
Advertisements

Georg Raffelt, Max-Planck-Institut für Physik, München Totsuka Memorial Symposium, 9 June 2009, Tokyo Supernova Neutrinos Georg Raffelt, Max-Planck-Institut.
Supernova Neutrinos Physics Opportunities with
Collective oscillations of SN neutrinos :: A three-flavor course :: Amol Dighe Tata Institute of Fundamental Research, Mumbai Melbourne Neutrino Theory.
Georg Raffelt, MPI Physics, Munich 2 nd Schrödinger Lecture, University Vienna, 10 May 2011 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia.
The Role of Neutrinos in Astrophysics A.B. Balantekin University of Wisconsin GDR Neutrino Laboratoire Astroparticule et Cosmologie.
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany TAUP 2007, September 2007, Sendai, Japan Collective Flavor Oscillations Georg Raffelt,
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany JIGSAW 07, Feb 2007, TIFR, Mumbai, India Collective Supernova Neutrino Oscillations.
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
Georg Raffelt, MPI Physics, Munich Neutrinos at the Forefront, Univ. de Lyon, 22–24 Oct 2012 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
Physics Opportunities with
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Prospect for detection of supernova neutrino NOW2014 Sep. 9 th, 2014 Otranto, Lecce, Italy 森俊彰 Takaaki Mori for the Super-Kamiokande Collaboration Okayama.
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
Alessandro MIRIZZI Dip.to di Fisica & Sez. INFN, Bari, Italy SUPERNOVA NEUTRINO PHYSICS WITH A MEGATON DETECTOR NOW 2004 Neutrino Oscillation Workshop.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
1 Detecting Supernova Neutrinos X.-H. Guo Beijing Normal University.
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
Melbourne Neutrino Theory Workshop, June ROLE OF DENSE MATTER IN COLLECTIVE NEUTRINO TRANSFORMATIONS Sergio Pastor (IFIC Valencia) in collaboration.
Georg Raffelt, MPI Physics, Munich Neutrino Astrophysics and Fundamental Properties, INT, Seattle, June 2015 Crab Nebula Neutrino Flavor Conversion in.
周 顺 中科院高能所理论室 JUNO中微子天文和天体物理学研讨会 北京,
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Günter Sigl, Astroparticules et Cosmologie, ParisILIAS/N5-N6 meeting, Paris, January 23-24, 2006  Supernovae as neutrino and gravitational wave sources.
Neutrino observatories Gravitational-wave Physics&Astronomy Workshop, January 28, 2011 M.Nakahata Kamioka observatory ICRR/IPMU, Univ. of Tokyo SN1987A.
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
Neutrinos – Ghost Particles of the Universe
From Supernovae to Neutron Stars
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
M. Selvi – SN detection with LVD – NNN‘06 Supernova  detection with LVD Marco Selvi – INFN Bologna, Large Volume LNGS.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
Cristina VOLPE (Institut de Physique Nucléaire Orsay, France) Challenges in neutrino (astro)physics.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
ASTROPHYSICAL NEUTRINOS STEEN HANNESTAD, Aarhus University GLA2011, JYVÄSKYLÄ e    
Coincident search for gravitational-wave and neutrino signals from core-collapse supernovae L. Cadonati (U Mass, Amherst), E. Coccia (LNGS and U Rome II),
Neutrinos and Supernovae Bob Bingham STFC – Centre for Fundamental Physics (CfFP) Rutherford Appleton Laboratory. SUPA– University of Strathclyde.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Supernova Neutrinos Нейтрино от сверхновые Georg Raffelt, 17 th Lomonosov.
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
RESCEU Symposium, University of Tokyo, November 2008John Beacom, The Ohio State University The Diffuse Supernova Neutrino Background John Beacom The Ohio.
Prospects of supernova neutrino observation by large detectors Hisakazu Minakata Tokyo Metropolitan University Hisakazu Minakata Tokyo Metropolitan University.
Basudeb Dasgupta, JIGSAW 2007 Mumbai Phase Effects in Neutrinos Conversions at a Supernova Shockwave Basudeb Dasgupta TIFR, Mumbai Joint Indo-German School.
Supernovae: BeyondDC-Phase 1 Some remarks on supernovae Detection principle – Absorption lengths – Effective volumes – Noise Supernova dynamics & fundamental.
Neutrinos Supernova Neutrinos Crab Nebula
Cristina VOLPE (AstroParticule et Cosmologie -APC) Open issues in neutrino flavor conversion in media.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Georg Raffelt, MPI Physics, Munich Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014 Crab NebulaNeutrinos in Astrophysics and Cosmology Introductory.
MULTIMESSENGER ASTRONOMY GSSI, November 2015, L’Aquila Giulia Pagliaroli
Waseda univ. Yamada lab. D1 Chinami Kato
Supernova Neutrinos Physics Opportunities with Flavor Oscillations
Detecting a Galactic Supernova with H2 or GEO
Astrophysical Constraints on Secret Neutrino Interactions
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
The Diffuse Flux of Supernova Neutrinos
SOLAR ATMOSPHERE NEUTRINOS
Neutrino astronomy Measuring the Sun’s Core
neutrino flavor conversion in media
SOLAR ATMOSPHERE NEUTRINOS
(Institut de Physique Nucléaire Orsay, France)
Neutrinos as probes of ultra-high energy astrophysical phenomena
The neutrino mass hierarchy and supernova n
Feasibility of geochemical galactic neutrino flux measurement
Presentation transcript:

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct 2009, Reims Physics Opportunities with Supernova Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München

LowNu 2009, Oct 2009, Reims, France Helium-burning star HeliumBurning HydrogenBurning Main-sequence star Hydrogen Burning Onion structure Degenerate iron core:   10 9 g cm  3   10 9 g cm  3 T  K T  K M Fe  1.5 M sun M Fe  1.5 M sun R Fe  8000 km R Fe  8000 km Collapse (implosion) Stellar Collapse and Supernova Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Collapse (implosion) Explosion Newborn Neutron Star ~ 50 km Proto-Neutron Star    nuc  3  g cm  3 T  30 MeV NeutrinoCooling Stellar Collapse and Supernova Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Newborn Neutron Star ~ 50 km Proto-Neutron Star    nuc  3  g cm  3 T  30 MeV NeutrinoCooling Gravitational binding energy Gravitational binding energy E b  3  erg  17% M SUN c 2 E b  3  erg  17% M SUN c 2 This shows up as This shows up as 99% Neutrinos 99% Neutrinos 1% Kinetic energy of explosion 1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy 0.01% Photons, outshine host galaxy Neutrino luminosity Neutrino luminosity L  3  erg / 3 sec L  3  erg / 3 sec  3  L SUN  3  L SUN While it lasts, outshines the entire While it lasts, outshines the entire visible universe visible universe Stellar Collapse and Supernova Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Diffuse Supernova Neutrino Background (DSNB) Supernova rate approximately Supernova rate approximately 1 SN / L Sun,B / 100 years 1 SN / L Sun,B / 100 years L sun,B = 0.54 L sun = 2  erg/s L sun,B = 0.54 L sun = 2  erg/s E ~ 3  erg per core-collapse E ~ 3  erg per core-collapse Core-collapse neutrino luminosity of typical galaxy comparable to photon luminosity (from nuclear burning) Core-collapse rate somewhat larger in the past. Estimated present-day flux ~ 10 cm  2 s  1 flux ~ 10 cm  2 s  1 Beacom & Vagins, hep-ph/ [Phys. Rev. Lett., 93:171101, 2004] Pushing the boundaries of neutrino astronomy to cosmological distances

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Neutrino Signal of Supernova 1987A Within clock uncertainties, signals are contemporaneous Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty  1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty  50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Large Detectors for Supernova Neutrinos Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) In brackets events for a “fiducial SN” at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100)

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as “correlated noise”. About 300 About 300 Cherenkov Cherenkov photons photons per OM per OM from a SN from a SN at 10 kpc at 10 kpc Noise Noise per OM per OM ~280 Hz ~280 Hz Total of Total of 4800 OMs 4800 OMs foreseen foreseen in IceCube in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/ ] Method first discussed by Pryor, Roos & Webster, Pryor, Roos & Webster, ApJ 329:355 (1988) ApJ 329:355 (1988) Halzen, Jacobsen & Zas Halzen, Jacobsen & Zas astro-ph/ astro-ph/

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Local Group of Galaxies Current best neutrino detectors sensitive out to few 100 kpc With megatonne class (30 x SK) 60 events from Andromeda

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Core-Collapse SN Rate in the Milky Way Gamma rays from 26 Al (Milky Way) Historical galactic SNe (all types) SN statistics in external galaxies No galactic neutrino burst since 1980 Core-collapse SNe per century van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Tammann et al. (1994) Strom (1994) 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro- ph/ Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Observed SNe in the Local Universe (Past Decade) Kistler,Yüksel, Ando, Beacom & Suzuki, arXiv: StatisticalPrediction

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Looking forward Probing Supernova Physics

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Supernova Delayed Explosion Scenario

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Delayed Explosion Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys.(1982) Bethe & Wilson, ApJ 295 (1985) 14

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Flavor-Dependent Fluxes and Spectra Broad characteristics Duration a few seconds Duration a few seconds  E  ~ 10  20 MeV  E  ~ 10  20 MeV  E  increases with time  E  increases with time Hierarchy of energies Hierarchy of energies Approximate equipartition Approximate equipartition of energy between flavors of energy between flavors Livermore numerical model ApJ 496 (1998) 216 Prompt e deleptonizationburst e e x _ However, in traditional simulations transport of  and  schematic Incomplete microphysics Incomplete microphysics Crude numerics to couple Crude numerics to couple neutrino transport with neutrino transport with hydro code hydro code

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Exploding Models (8  10 Solar Masses) with O-Ne-Mg-Cores Kitaura, Janka & Hillebrandt: “Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae”, astro-ph/

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Neutrino Signal from an O-Ne-Mg Core SN (Garching)

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Neutrino Signal from an O-Ne-Mg Core SN (Garching)

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Neutrino Signal from an O-Ne-Mg Core SN (Garching)

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Neutrino Signal from an O-Ne-Mg Core SN (Garching)

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Interpreting SN 1987A Neutrinos Total Binding Energy Total Binding Energy 95 % CL Contours Jegerlehner, Neubig & Raffelt, PRD 54 (1996) 1194 Assume thermal spectra and equipartition of energy between the six degrees of freedom e, ,  and their e, ,  and theirantiparticles Spectral e Temperature Spectral e Temperature _ Theory

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France New Long-Term Cooling Calculations (Basel Group) Fischer et al. (Basel Group), arXiv:

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Flavor Dependence of Neutrino Emission (Basel Group) Fischer et al. (Basel Group), arXiv:

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Standing Accretion Shock Instability (SASI) Mezzacappa et al.,

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Luminosity Variation Detectable in Neutrinos? Marek, Janka & Müller, arXiv: Hemispheric averagePolar direction Neutrino events in 10 ms bins for SN (10 kpc) during accretion phase: Super-K 70 1  ~ 10% Super-K 70 1  ~ 10% 30 x Super-K 2   ~ 2% 30 x Super-K 2   ~ 2% IceCube 1   ~ 1% IceCube 1   ~ 1% Detecting the spectrum of luminosity variations can Detect SASI instability in neutrinos Detect SASI instability in neutrinos Provide equation-of-state Provide equation-of-state information information

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Fourier Transform of Luminosity Variation Marek, Janka & Müller, arXiv: Approximate level of Poisson noise in IceCube for a SN at 10 kpc Hemispheric average Polar direction Detectability to be studied in more detail (Lund, Marek, Lunardini, Janka, Raffelt, Work in progress)

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Signal dispersion for Next Nearby SN Neutrino Mass and Resolution of Time Variations IceCube binning of data: 1.64 ms in each OM IceCube binning of data: 1.64 ms in each OM Laboratory neutrino mass limit: 2.2 eV Laboratory neutrino mass limit: 2.2 eV Cosmological limit  m < 0.6 eV, so individual mass limit 0.2 eV Cosmological limit  m < 0.6 eV, so individual mass limit 0.2 eV KATRIN sensitivity roughly 0.2 eV KATRIN sensitivity roughly 0.2 eV For SN signal interpretation of fast time variations, it is important to have the cosmological limit and future KATRIN measurement/limit Supernova neutrino aficionados are new customers for KATRIN results!

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Gravitational Waves from Core-Collapse Supernovae Müller, Rampp, Buras, Janka, & Shoemaker, Müller, Rampp, Buras, Janka, & Shoemaker, “Towards gravitational wave signals from “Towards gravitational wave signals from realistic core collapse supernova models,” realistic core collapse supernova models,” astro-ph/ astro-ph/ The gravitational-wave signal from convection is a generic and dominating feature Bounce Convection Asymmetric neutrino emission

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Millisecond Bounce Time Reconstruction Super-KamiokandeIceCube Halzen & Raffelt arXiv: Onset of neutrino emission Pagliaroli, Vissani, Coccia & Fulgione arXiv: Emission model adapted to Emission model adapted to measured SN 1987A data measured SN 1987A data “Pessimistic distance” of 20 kpc “Pessimistic distance” of 20 kpc Determine bounce time to within Determine bounce time to within a few tens of milliseconds a few tens of milliseconds 10 kpc

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Looking forward Neutrino Flavor Oscillations

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Level-Crossing Diagram in a SN Envelope Dighe & Smirnov, Identifying the neutrino mass spectrum from a supernova neutrino burst, astro-ph/ Normal mass hierarchy Inverted mass hierarchy

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Collective Effects in Neutrino Flavor Oscillations Collapsed supernova core or accretion torus of merging neutron stars: Neutrino flux very dense: Up to cm  3 Neutrino flux very dense: Up to cm  3 Neutrino-neutrino interaction energy Neutrino-neutrino interaction energy much larger than vacuum oscillation frequency much larger than vacuum oscillation frequency Large “matter effect” of neutrinos on each Large “matter effect” of neutrinos on each other other Non-linear oscillation effects Non-linear oscillation effects Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency  = 0.3 km  1  = 0.3 km  1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km)  = 0.3  10 5 km  1  = 0.3  10 5 km  1 Falls off approximately as r  4 Falls off approximately as r  4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear)

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Collective SN Neutrino Oscillations since 2006 Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/ , Duan et al. astro-ph/ Duan, Fuller, Carlson & Qian, astro-ph/ , , arXiv: , Duan, Fuller & Qian, arXiv: , , Duan, Fuller & Carlson, arXiv: Duan & Kneller, arXiv: Hannestad, Raffelt, Sigl & Wong, astro-ph/ Balantekin & Pehlivan, astro-ph/ Balantekin, Gava & Volpe, arXiv: Gava & Volpe, arXiv: Gava, Kneller, Volpe & McLaughlin, arXiv: Raffelt & Sigl, hep-ph/ Raffelt & Smirnov, arXiv: , Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv: , Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl, arXiv: Raffelt, arXiv: Fogli, Lisi, Marrone & Mirizzi, arXiv: Fogli, Lisi, Marrone & Tamborra, arXiv: , Lunardini, Müller & Janka, arXiv: Dasgupta & Dighe, arXiv: Dasgupta, Dighe & Mirizzi, arXiv: Dasgupta, Dighe, Mirizzi & Raffelt, arXiv: , Dasgupta, Dighe, Raffelt & Smirnov, arXiv: Sawyer, arXiv: Chakraborty, Choubey, Dasgupta & Kar, arXiv: Blennow, Mirizzi & Serpico, arXiv: Wei Liao, arXiv: ,

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Spectral Split (Accretion-Phase Example) Fogli, Lisi, Marrone & Mirizzi, arXiv: Initial fluxes at neutrino sphere Aftercollectivetrans-formation For explanation see Raffelt & Smirnov arXiv: Duan, Fuller, Carlson & Qian arXiv:

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Distinguishing Mixing Scenarios Hierarchy sin 2  13 Survival Probability Eartheffects Normal Normal Inverted Inverted ≳ 10  3 ≳ 10  3 ≲ 10  5 ≲ 10  5 cos 2  12 Normal Normal Inverted Inverted sin 2  E < E split E > E split 0 0 Assuming “standard” flux spectra leading to a single split Assuming “standard” flux spectra leading to a single split Probably generic for accretion phase Probably generic for accretion phase Adapted from Dighe, arXiv:

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Mass Hierarchy at Extremely Small Theta-13 Dasgupta, Dighe & Mirizzi, arXiv: Ratio of spectra in two water Cherenkov detectors (0.4 Mton), one shadowed by the Earth, the other not Using Earth matter effects to diagnose transformations

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Looking forward What exactly will be learnt from the neutrinos of the next nearby SN depends a lot on what exactly is observed

Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Looking forward SN neutrinos are powerful astrophysical and particle-physics messengers