Three-Dimensional Water Networks Solvating an Excess Positive Charge: New Insights into the Molecular Physics of Ion Hydration Conrad T. Wolke Johnson.

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

Understanding Complex Spectral Signatures of Embedded Excess Protons in Molecular Scaffolds Andrew F. DeBlase Advisor: Mark A. Johnson 68 th Internatinal.
Characterization of Structural Motifs for CO 2 Accommodation in Two Model Ionic Liquid Systems Using Cryogenic Ion Vibrational Predissociation Spectroscopy.
Water Solvation of Copper Hydroxide Brett Marsh-UW Madison.
Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku University, Japan Jer-Lai Kuo Institute of Atomic and Molecular.
Lecture 3 INFRARED SPECTROMETRY
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Infrared spectroscopy of Li(methylamine) n (NH 3 ) m clusters Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University.
Characterization of Ion-Driven Conformations in Diphenylacetylene Molecular Switches Arron Wolk Johnson Lab Yale University.
IR spectroscopy of first-row transition metal clusters and their complexes with simple molecules FELIX facility, Radboud University Nijmegen, the Netherlands.
Aloke Das Indian Institute of Science Education and Research, Pune Mimicking trimeric interactions in the aromatic side chains of the proteins: A gas phase.
Probing isomer interconversion in anionic water clusters using an Ar-mediated pump- probe approach T. L. Guasco, G. H. Gardenier, L. R. McCunn, B. M. Elliott,
Electronic spectroscopy of Li(NH 3 ) 4 Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University of Leicester UK.
EXPLORING SOLVENT SHAPE AND FUNCTION USING MASS- AND ISOMER-SELECTIVE VIBRATIONAL SPECTROSCOPY Special thanks to Tom, Anne and Terry.
Isomer Selection in NO 2 ˉ · H 2 O · Ar Rachael Relph Rob Roscioli, Ben Elliott, Joe Bopp, Tim Guasco, George Gardenier Mark Johnson Johnson Lab Yale University.
Introduction Methods Conclusions Acknowledgement The geometries, energies, and harmonic vibrational frequencies of complexes studied were calculated using.
Infrared Spectroscopic Investigation of Magic Number Hydrated Metal Ion Clusters Jordan Beck, Jim Lisy June 22,2009 OSU International Symposium on Molecular.
Infrared spectroscopy of the hydrated sulfate dianion Columbus2006.
Photoinitiation of intra-cluster electron scavenging: An IR study of the CH 3 NO 2 ·(H 2 O) 6 anion Kristin Breen, Timothy Guasco, and Mark Johnson Department.
Christopher Leavitt Yale University Vibrational spectra of cryogenic peptide ions using H 2 predissociation spectroscopy.
Microscopic Compatibility between Methanol and Water in Hydrogen Bond Network Development in Protonated Clusters Asuka Fujii, Ken-ichiro Suhara, Kenta.
Department of Chemistry, University of Georgia, Athens, GA National Science Foundation Infrared.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Multiple Photon Absorption in Hydrated Cesium Ion Clusters Jordan Beck, Jim Lisy June 17,2008 OSU International Symposium on Molecular Spectroscopy.
Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+
Kristin Breen, Helen Gerardi, George Gardenier, Timothy Guasco,
Spectroscopy of Multiply Charged Metal Ions: IR Study of Mn 2+ (18-crown-6 ether)(MeOH) 1-3 Jason D. Rodriguez and James M. Lisy Department of Chemistry,
P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN
Ohio State (Current and recent): Laura Dzugan Jason FordSamantha Horvath Meng Huang Zhou LinMelanie Marlett Bernice Opoku-AgyemanAndrew PetitBethany Wellen.
Towards Isolation of Organometallic Iridium Catalytic Intermediates Arron Wolk Johnson Laboratory Thursday, June 20 th, 2013.
Vibrational Predissociation Spectra in the Shared Proton Region of Protonated Formic Acid Wires: Characterizing Proton Motion in Linear H-Bonded Networks.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Proton Sponges: A Rigid Organic Scaffold to Reveal the Quantum Structure of the Intramolecular Proton Bond Andrew F. DeBlase, Michael T. Scerba, Thomas.
Infrared spectroscopy of cold, hydrated alkaline-earth salt clusters
Pujarini Banerjee & Tapas Chakraborty Indian Association for the Cultivation of Science Kolkata, India International Symposium on Molecular Spectroscopy,
Infrared Resonance Enhanced Photodissociation (IR- REPD) Spectroscopy used to determine solvation and structure of Ni + (C 6 H 6 ) n and Ni + (C 6 H 6.
Hydrogen Bond Ring Opening and Closing in Protonated Methanol Clusters Probed by Infrared Spectroscopy with and without Ar-Tagging Toru Hamashima, Kenta.
H 2 Predissociation Spectroscopy: Arron Wolk Yale University Infrared Predissociation Spectroscopy of H 2 -tagged Dicarboxylic Acid Anions.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
INFRARED SPECTROSCOPY OF (CH 3 ) 3 N-H + -(H 2 O) n (n = 1-22) Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku.
Gas Phase Infrared Spectroscopy of Protonated Species Department of Chemistry University of Georgia Athens Georgia,
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Protonated Water Clusters Revisited: Investigating the Elusive Excess Proton Vibrational Signature using Cryogenic Ion Spectroscopy Joseph Fournier, Christopher.
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
Magic Numbers in Large Hydrated Alkali Metal Clusters: K + and Cs + Matthew L. Ackerman, Jason D. Rodriguez, Dorothy J. Miller, and James M. Lisy University.
John Herbert Department of Chemistry The Ohio State University Anion–water vs. electron–water hydrogen bonds 61 st Molecular Spectroscopy Symposium 6/23/06.
How Do Networks of Water Accommodate an Excess Electron?, Joseph R. Roscioli, and Mark A. Johnson Nathan I. Hammer, Joseph R. Roscioli, and Mark A. Johnson.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Capture and Structural Determination of Activated Intermediates in Transition Metal Catalyzed CO 2 Reduction Using CIVP Spectroscopy Stephanie Craig Johnson.
From the Bottom Up: Hydrogen Bonding in Ionic Liquids 6/19/2014 Olga Gorlova, Conrad Wolke, Joseph Fournier, Christopher Johnson and Mark Johnson.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
Asymmetry of M + (H 2 O)RG Complexes, (M=V, Nb) Revealed with Infrared Spectroscopy Timothy B Ward, Evangelos Miliordos, Sotiris Xantheas, Michael A Duncan.
Water network-mediated, electron induced proton transfer in anionic [C 5 H 5 N·(H 2 O) n ]¯ clusters: Size-dependent formation of the pyridinium radical.
FAR-IR ACTION SPECTROSCOPY OF AMINOPHENOL AND ETHYLVANILLIN: EXPERIMENT AND THEORY Vasyl Yatsyna, Daniël Bakker*, Raimund Feifel, Vitali Zhaunerchyk, Anouk.
Erin M. Duffy, Brett M. Marsh, Jonathan M. Voss, Etienne Garand University of Wisconsin, Madison International Symposium on Molecular Spectroscopy June.
Analysis of Hydrogen Bonding in the OH Stretch Region of Protonated Water Clusters Laura C. Dzugan and Anne B. McCoy June 26, 2015.
Near-Infrared Spectroscopy of Small Protonated Water Clusters
Helen K. Gerardi1, Andrew F. DeBlase1, Xiaoge Su2, Kenneth D
JONATHAN M. VOSS, STEVEN J. KREGEL, KAITLYN C
Temperature Effects in Hydrated Alkali Metal Ions
Jacob T. Stewart and Bradley M
Electronic Spectrum of Cryogenic Ruthenium-Tris-Bipyridine Dications
Vibrational Signatures of Solvent-Mediated Core Ion Deformation in Size-Selected [MgSO4Mg(H2O)n=4-11]2+ Clusters Patrick Kelleher, Joseph DePalma, Christopher.
Spectroscopy in Traps: ISMS 2016
E. D. Pillai, J. Velasquez, P.D. Carnegie, M. A. Duncan
T. L. Guasco, B. M. Elliott, M. Z. Kamrath and M. A. Johnson
Vibrational Predissociation of the Methanol Dimer
Stepwise Internal Energy Control for Protonated Methanol Clusters
Time-Resolved Recombination Dynamics of Large IBr-(CO2)n (n=11-14) Clusters Joshua P. Martin, Joshua P. Darr, Jack Barbera, Matt A. Thompson, Robert.
Presentation transcript:

Three-Dimensional Water Networks Solvating an Excess Positive Charge: New Insights into the Molecular Physics of Ion Hydration Conrad T. Wolke Johnson Group June 24, 2015 International Symposium on Molecular Spectroscopy

Microhydration of Cs + (H 2 O) 20  Cs + (H 2 O) 20 is a “Magic” cluster  Predict structure from MS (Castleman, 1991)  Identify structure by the band pattern of free OH stretch (Williams, 2013) Cooper et al., JPCA, 117, 6571 (2013) Selinger et al., JPC, 95, 8442 (1991) Photon Energy (cm -1 ) Bound OH stretches B3LYP/ 6-31+G** Pentagonal Dodecahedron AAD AD Free OH stretch

ESI Temperature Controlled Ion Trap Ion Optics Flight Tube Wiley- McLaren TOF Reflectron Turning Quad MCP Nd:YAG OPO/OPA Tunable IR cm -1 RF-Ion Guides Wavemeter 2-4 kV Dry Air mM Solution 1 st Skimmer Capillary ESI Needle H 2 O/D 2 O P Pressure 1 st Diff. Stage Tandem Time of Flight Mass Spectrometer

Infrared Spectrum of Cs + (H 2 O) 20 Norm. Int. (a.u.) Mass to Charge Ratio (amu/e) Cs + (H 2 O) 20  Using D 2 messenger tagging to acquire complete IR predissociation spectrum of cold Cs + hydrates from 400 to 3800 cm -1 Cooper et al., JPCA, 117, 6571 (2013) Fournier et al., PNAS, 111, (2014) OH stretches H 2 O bend Librations Calc. Int Photon Energy (cm -1 ) Pred. Yield (a.u.) Knut Asmis (Free Electron Laser) B3LYP/ G**

D 2 Predissociation Yield (a.u.) Photon Energy (cm -1 ) Effects of Deuteration: Cs + (D 2 O) 20  IR Bands of the H-bonded network still featureless  Deuteration causes the expected global red-shift of the IR spectrum Continuum resolves into distinct bands Cs + (H 2 O) 20 Cs + (D 2 O) 20

Refine Harmonic Calculations: Cs + (D 2 O) 20 D 2 Pred. Yield / Calc. Intensity (a.u.) Cs + (D 2 O) Photon Energy (cm -1 ) B3LYP/6-31++G** Schulz et al., CPC, 18, 98 (2002)  IR Bands of the H-bonded network still featureless  Deuteration causes the expected global red-shift of the IR spectrum Continuum resolves into distinct bands Use all IR features to match experiment with calculation

D 2 Pred. Yield / Calc. Intensity (a.u.) Cs + (D 2 O) Photon Energy (cm -1 ) B3LYP/6-31++G** Free AAD ADD 1 ADD 2 ADD 3 Refine Harmonic Calculations: Cs + (D 2 O) 20  One free OH stretch from AAD type water H-Bond acceptor (A) and donor (D)  Asymmetric bound OH stretches of ADD type waters  Corresponding bound AAD OH stretch and symmetric ADD stretches Schulz et al., CPC, 18, 98 (2002) Bound AAD sym asym

D 2 Pred. Yield / Calc. Intensity (a.u.) Cs + (D 2 O) Photon Energy (cm -1 ) B3LYP/6-31++G** Can we assign H-bonded OH stretches to individual types of water molecules? Refine Harmonic Calculations: Cs + (D 2 O) 20 Schulz et al., CPC, 18, 98 (2002) Free AAD Bound AAD ADD 1 ADD 2 ADD 3 sym asym

Photon Energy (cm -1 ) Cs + (H 2 O) 6 – Models for Solvation Mechanism Sotiris S. Xantheas PNNL James Lisy UIUC  Unbiased reproduction of IR spectra No Scaling  Exact mapping of the PES Ion – Water Water – Water D 2 Pred. Yield / Calc. Intensity (a.u.) Kolaski et al., JCP, 126, (2007) CCSD(T)/aug-cc-pVDZ MP2/aug-cc-pVTZ (VPT2) Cs + (H 2 O) 6

Assignment of Local Mode Patterns D 2 Pred. Yield / Calc. Int. (a.u.) Photon Energy (cm -1 ) CCSD(T)/aug-cc-pVDZ MP2/aug-cc-pVTZ (VPT2) Single Donor Cyclic Core Can we isolate a single H 2 O to prove the band assignment?

Spectral Isolation of Local Band Displacement Garand et al., Science, 335, 694 (2012) Stearns et al., PCCP, 11, 125 (2009) Large shifts from isotopic labeling of localized 15 N and 13 C atoms confine single transitions Minor contributions to the normal modes are also evident  How about non-covalent bonds?  Isolation of local band displacement contribution through isotopic labeling Etienne Garand C=O Stretch N-H Bend

ESI Temperature Controlled Ion Trap Ion Optics Flight Tube Reflectron MCP Nd:YAG OPO/OPA Tunable IR cm -1 Wavemeter Isotopic Labeling Scheme for H-Bonded Networks Wiley- McLaren TOF Turning Quad RF-Ion Guides 2-4 kV Dry Air mM Solution 1 st Skimmer Capillary ESI Needle D2OD2O P Pressure 1 st Diff. Stage Cs + (D 2 O) n + H 2 O vap Cs + (D 2 O) n-m (H 2 O) m

Relative Intensity (a.u.) Mass to Charge (amu/e) H 2 O exchange 5 67 Cs + (D 2 O) n MS Evidence: Does H 2 O stay intact? Liquid phase: 25% H 2 O H 2 O : D 2 O →50% HDO 25% D 2 O  Mass Spec spaced by 2 amu/Z  No HOD bending mode H 2 O stays intact Isotopic Labeling of Cs + (D 2 O) n-m (H 2 O) m D 2 Pred. Yield (a.u.) Photon Energy (cm -1 ) Cs + (D 2 O) 5 (H 2 O) HOH Bending IR Spectroscopic Evidence: HOD Bend D2OD2O H2OH2O

Cs + (D 2 O) 5 (H 2 O) Cs + (H 2 O) 6 Photon Energy (cm -1 )  Infrared spectrum of the isotopically labeled complex stays intact Each H 2 O adds its 2 individual modes All 6 position equally populated  FWHM of OH stretch bands are reduced Evidence for minor vibrational excitonic coupling Can we isolate modes from individual H 2 O molecules? 27cm -1 15cm -1 D 2 Predissociation Yield (a.u.) Spectral Manifestation of Cs + (D 2 O) 5 (H 2 O)

ESI Temperature Controlled Ion Trap Ion Optics Flight Tube Reflectron Coaxial TOF Reflectron MCP Nd:YAG OPO/OPA Tunable IR cm -1 Ion Optics RF-Ion Guides Wavemeter OPO/OPA Isotopomer Specific IR-IR Double Resonance Wiley- McLaren TOF Turning Quad Cs + (D 2 O) n + H 2 O vap Cs + (D 2 O) n-m (H 2 O) m

ESI Temperature Controlled Ion Trap Ion Optics Flight Tube Coaxial TOF Reflectron MCP Nd:YAG OPO/OPA Tunable IR cm -1 Ion Optics Wavemeter Isotopomer Specific IR-IR Double Resonance OPO/OPA Cs + (D 2 O) n + H 2 O vap Cs + (D 2 O) n-m (H 2 O) m RF-Ion Guides Wiley- McLaren TOF Turning Quad

Isotopomer Specific IR Spectra of Cs + (H 2 O)(D 2 O) N 2 Pred. Yield (a.u.) Photon Energy (cm -1 ) IR 2 MS 3 Signal Single Donor Cyclic Core

CIVP Spectrum IR 2 MS 3 Dip Signal T Trap = 10 K Photon Energy (cm -1 ) A B C D A B C D I – (H 2 O)(D 2 O) – Isotopomer Specific IR Spectra MP2/aug-cc-pVDZ(-PP)

CIVP Spectrum IR 2 MS 3 Dip Signal T Trap = 25 K Photon Energy (cm -1 ) A B C D A B C D I – (H 2 O)(D 2 O) – Isotopomer Specific IR Spectra MP2/aug-cc-pVDZ(-PP)

 Deuteration of large clathrate alkali hydrates resolves distinct patterns in the H-bonded water stretch continuum Conclusions Photon Energy (cm -1 ) Cs + (D 2 O) 20  Trace Isotope Scheme in the gas-phase allows labeling of an intact H 2 O  Spectral Isolation of the two OH stretching modes originating from a single H 2 O molecule  Vibrational Spectroscopy to unravel dynamical behavior in H-Bonded Networks Cs + (D 2 O) 5 (H 2 O)

Acknowledgments Johnson Group Joseph A. Fournier Olga Gorlova Stephanie M. Craig Joanna K. Denton Joseph W. DePalma Chinh H. Duong Patrick J. Kelleher Fabian S. Menges Gary H. Weddle Mark A. Johnson PNNL Evangelos Miliordos Sotiris S. Xantheas

Trap Temperature (K) Photon Energy (cm -1 ) Temperature Dependence of I ‒ (H 2 O) 2

Francesco Paesani, UCSD Molecular Dynamics of I ‒ (H 2 O) 2

Assignment of Local Mode Patterns D 2 Pred. Yield / Calc. Int. (a.u.) Photon Energy (cm -1 ) CCSD(T)/aug-cc-pVDZ MP2/aug-cc-pVTZ (anharmonic) Cyclic Core Single Donor IR 2 MS 3 Dip Signal

Conclusions 1.Precise Model for Ion solvation  Exact Predictions for Ion-Water and Water-Water interaction 2. Spectroscopic Isolation of a single isotopically labeled water molecule  Infrared Transitions  Chemical Environment Access to:  Dynamics  Phase Transitions of finite size systems

D 2 Predissociation Yield (a.u.) Photon Energy (cm -1 ) Cs + (H 2 O) 20 Cs + (D 2 O)

D 2 Predissociation Yield (a.u.) Photon Energy (cm -1 ) Cs + (H 2 O) 20 Cs + (D 2 O)

Microhydration of Monovalent Salts Cs + (H 2 O) n Cs + (H 2 O) 6 Photon Energy (cm -1 ) IR Absorption (a.u.)

Simulations of complex aqueous environments, require microscopic behavior of ions under restricted solvation Cluster spectra provide input for Ion-water intermolecular potential surface Paesani, F. et al., J. Chem. Theory Comput. 11, 1145 (2015) Xantheas, S.S. Et al., PCCP, 16, 6886 (2014) Motivation: Models for Ocean Surface Layer

 MD Calculation produced ̴1000 Structures  Refined by DFT yields the vibrational spectra  Minimum energy structure does not yield best Fit D 2 Pred. Yield / Calc. Intensity (a.u.) kcal/mol Cs + (D 2 O) 20 Photon Energy (cm -1 ) Schulz et al., PCCP, 5, 5021 (2003) Electronic Structure Calculations B3LYP/6-31++G**

N 2 Pred. Yield (a.u.) Photon Energy (cm -1 ) IR 2 MS 3 Dip Signal (a.u.) Isotopomer Specific IR Spectra of Cs + (H 2 O)(D 2 O) 5