11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
Testing shell model on nuclei
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Dineutron formation and breaking in 8 He th Sep. The 22nd European Conference on Few-Body Problems in Physics 1 Department of Physics, Kyoto University.
KEK SRC Workshop Sept 25, 2009 KEK Theory Center Workshop on Short-range Correlations and Tensor Structure at J-PARC September 25, 2009 Search for Direct.
理研.08 少数体系アプローチの研究と今後の課題 Few-Body Approach and Future Problems ・ NN interaction is characterized by strong short-range repulsion and long-range tensor.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
Systematic study of isovector dipole mode up to A=50 KEK 研究会「原子核・ハドロン物理 : 横断研究会」 KEK, 2007 年 11 月 19 日 -21 日 稲倉恒法 中務孝 矢花一浩 ( 筑波大学 ) ( 理研 ) ( 筑波大学 )
FB181 Dynamics of Macroscopic and Microscopic Three-Body Systems Outline Three-body systems of composite particles (clusters) Macroscopic = Use of fewer.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
K - d 原子の理論計算の現状と 今後の課題 Shota Ohnishi (Tokyo Inst. Tech. / RIKEN) in collaboration with Yoichi Ikeda (RIKEN) Tetsuo Hyodo (YITP, Kyoto Univ. ) Emiko Hiyama.
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
Auxiliary Field Diffusion Monte Carlo study of symmetric nuclear matter S. Gandolfi Dipartimento di Fisica and INFN, Università di Trento I Povo,
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Cluster aspect of light unstable nuclei
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Furong Xu (许甫荣) Many-body calculations with realistic and phenomenological nuclear forces Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
第十四届全国核结构大会暨第十次全国核结构专题讨论会
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
軽い重イオン散乱における 三体斥力の効果 古本 猛憲 ( 大阪市立大学・理学研究科 ) 「少数系物理の現状と今後の展望」研究会 (Dec 23-25, 2008 at RCNP) 共同研究者 櫻木 千典 ( 大阪市立大学・理学研究科 ) 山本 安夫 ( 都留文科大学 )
Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」
Furong Xu (许甫荣) Many-body correlations in ab-initio methods Outline I. Nuclear forces, Renormalizations (induced correlations) II. N 3 LO (LQCD) MBPT,
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Search for direct evidence of tensor interaction in nuclei = high momentum component in nuclei = TERASHIMA Satoru 寺嶋 知 Depart. of Nuclear Science and Technology,
S. Aoki (Univ. of Tsukuba), T. Doi (Univ. of Tsukuba), T. Hatsuda (Univ. of Tokyo), T. Inoue (Univ. of Tsukuba), N. Ishii (Univ. of Tokyo), K. Murano (Univ.
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Tensor interaction in Extended Brueckner-Hartree-Fock theory Hiroshi Toki (RCNP, Osaka) In collaboration with Yoko Ogawa.
Pairing Correlation in neutron-rich nuclei
Description of nuclear structures in light nuclei with Brueckner-AMD
Nuclear structure calculations with realistic nuclear forces
Tensor optimized shell model and role of pion in finite nuclei
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic Chiral Mean Field Model for Finite Nuclei
Relativistic mean field theory and chiral symmetry for finite nuclei
Relativistic extended chiral mean field model for finite nuclei
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Kernfysica: quarks, nucleonen en kernen
Pions in nuclei and tensor force
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
Ab-initio nuclear structure calculations with MBPT and BHF
Osaka Institute of Technology
Presentation transcript:

11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP

Outline 2 Tensor Optimized Shell Model (TOSM) Unitary Correlation Operator Method (UCOM) TOSM + UCOM with bare interaction Application of TOSM to Li isotopes Halo formation of 11 Li TM, K.Kato, H.Toki, K.Ikeda, PRC76(2007) TM, K.Kato, K.Ikeda, PRC76(2007) TM, Sugimoto, Kato, Toki, Ikeda, PTP117(2007)257 TM. Y.Kikuchi, K.Kato, H.Toki, K.Ikeda, PTP119(2008)561 TM, H. Toki, K. Ikeda, Submited to PTP

3 Motivation for tensor force Structures of light nuclei with bare interaction tensor correlation + short-range correlation Tensor force (V tensor ) plays a significant role in the nuclear structure. –In 4 He, – ~ 80% (GFMC) R.B. Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, PRC62(2001) We would like to understand the role of V tensor in the nuclear structure by describing tensor correlation explicitly. model wave function (shell model and cluster model) He, Li isotopes (LS splitting, halo formation, level inversion)

4 Tensor & Short-range correlations 4 Tensor correlation in TOSM (long and intermediate) – –2p2h mixing optimizing the particle states (radial & high-L) Short-range correlation –Short-range repulsion in the bare NN force –Unitary Correlation Operator Method (UCOM) S D H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61 T. Neff, H. Feldmeier, NPA713(2003)311

5 Property of the tensor force 5 Long and intermediate ranges Centrifugal potential pushes away the L=2 wave function.

6 Tensor-optimized shell model (TOSM) 6 Tensor correlation in the shell model type approach. Configuration mixing within 2p2h excitations with high-L orbit TM et al., PTP113(2005) TM et al., PTP117(2007) T.Terasawa, PTP22(’59)) Length parameters such as are determined independently and variationally. –Describe high momentum component from V tensor CPP-HF by Sugimoto et al,(NPA740) / Akaishi (NPA738) CPP-RMF by Ogawa et al.(PRC73), CPP-AMD by Dote et al.(PTP115) 4 He TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257

7 Hamiltonian and variational equations in TOSM 7 Effective interaction : Akaishi force (NPA738) –G-matrix from AV8’ with k Q =2.8 fm -1 –Long and intermediate ranges of V tensor survive. –Adjust V central to reproduce B.E. and radius of 4 He TM, Sugimoto, Kato, Toki, Ikeda, PTP117(’07)257

8 4 He in TOSM Orbitb particle /b hole 0p 1/ p 3/ s 1/ d 3/ d 5/ f 5/ f 7/ Length parameters good convergence Higher shell effect L max Shrink v nn : G-matrix Cf. K. Shimizu, M. Ichimura and A. Arima, NPA226(1973)282.

9 Configuration of 4 He in TOSM (0s 1/2 ) % (0s 1/2 ) 2 JT (0p 1/2 ) 2 JT JT= JT= (0s 1/2 ) 2 10 (1s 1/2 )(0d 3/2 ) (0s 1/2 ) 2 10 (0p 3/2 )(0f 5/2 ) P[D] Energy (MeV)  28.0   of pion nature. deuteron correlation with (J,T)=(1,0) 4 Gaussians instead of HO c.m. excitation = 0.6 MeV Cf. R.Schiavilla et al. (GFMC) PRL98(’07)132501

10 Tensor & Short-range correlations 10 Tensor correlation in TOSM (long and intermediate) – –2p2h mixing optimizing the particle states (radial & high-L) Short-range correlation –Short-range repulsion in the bare NN force –Unitary Correlation Operator Method (UCOM) S D H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61 T. Neff, H. Feldmeier NPA713(2003)311 TOSM+UCOM

11 Unitary Correlation Operator Method 11 H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61 short-range correlator Bare Hamiltonian Shift operator depending on the relative distance r TOSM 2-body cluster expansion of Hamiltonian

12 Short-range correlator : C (or C r ) AV8’ : Central+LS+Tensor 3GeV repulsion Original  r 2 CC VcVc 1E1E 3E3E 1O1O 3O3O

13 4 He in UCOM (Afnan-Tang, V c only) 13 CC

14 4 He with AV8’ in TOSM+UCOM Kamada et al. PRC64 (Jacobi) AV8’ : Central+ LS+Tensor exact Gaussian expansion for particle states (6 Gaussians) Two-body cluster expansion of Hamiltonian

15 Extension of UCOM : S-wave UCOM 15 for only relative S-wave wave function – minimal effect of UCOM SD coupling 5 MeV gain

16 Different effects of correlation function 16 S D due to Centrifugal Barrier D-wave S-wave No Centrifugal Barrier Short-range repulsion

17 Saturation of 4 He in UCOM 17 T. Neff, H. Feldmeier NPA713(2003)311 Short tensor Long tensor TOSM+UCOM Benchmark cal. Kamada et al. PRC64 UCOM: short-range + tensor Energy

18 4 He in TOSM + S-wave UCOM T VTVT V LS VCVC E (exact) Kamada et al. PRC64 (Jacobi) Remaining effect : 3-body cluster term in UCOM

19 Summary Tensor and short-range correlations –Tensor-optimized shell model (TOSM) He & Li isotopes (LS splitting, Halo formation) –Unitary Correlation Operator Method (UCOM) Extended UCOM : S-wave UCOM In TOSM+UCOM, we can study the nuclear structure starting from the bare interaction. –Spectroscopy of light nuclei (p-shell, sd-shell) 19

20 Pion exchange interaction vs. V tensor Delta interaction Yukawa interaction Involve large momentum Tensor operator - V tensor produces the high momentum component.

21 Characteristics of Li-isotopes 21 Breaking of magicity N= Li, Be 11 Li … (1s) 2 ~ 50%. (Expt by Simon et al.,PRL83) Mechanism is unclear Halo structure 11 Li

22 Pairing-blocking : K.Kato,T.Yamada,K.Ikeda,PTP101(‘99)119, Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1.

23 11 Li in coupled 9 Li+n+n model System is solved based on RGM 23 Orthogonality Condition Model (OCM) is applied. TOSM

24 11 Li G.S. properties (S 2n =0.31 MeV) Tensor +Pairing Simon et al. P(s 2 ) RmRm E(s 2 )-E(p 2 ) [MeV] Pairing correlation couples (0p) 2 and (1s) 2 for last 2n

25 2n correlation density in 11 Li n Di-neutron type config. 9 Li Cigar type config. n s 2 =4%s 2 =47% K. Hagino and H. Sagawa, PRC72(2005) Li H.Esbensen and G.F.Bertsch, NPA542(1992)310

26 Short-range correlator : C (or C r ) 2-body approximation in the cluster expansion of operator Hamiltonian in UCOM

27 LS splitting in 5 He with tensor corr. 27 Orthogonarity Condition Model (OCM) is applied. T. Terasawa,PTP22(’59) S. Nagata, T. Sasakawa, T. Sawada R. Tamagaki, PTP22(’59) K. Ando, H. Bando PTP66(’81) TM, K.Kato, K.Ikeda PTP113(’05)

28 Phase shifts of 4 He-n scattering 28

29 6 He in coupled 4 He+n+n model System is solved based on RGM Orthogonality Condition Model (OCM) is applied. TOSM

30 Tensor correlation in 6 He 30 Ground stateExcited state TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681

31 Theory With Tensor 6 He results in coupled 4 He+n+n model (0p 3/2 ) 2 can be described in Naive 4 He+n+n model (0p 1/2 ) 2 loses the energy Tensor suppression in complex scaling for resonances