Correctors magnets V. Zubko, IHEP, Protvino SIS 300 Pre-consortium Meeting Thursday 19 March 2009, Protvino.

Slides:



Advertisements
Similar presentations
Q1 for JLAB’s 12 Gev/c Super High Momentum Spectrometer S.R. Lassiter, P.B. Brindza, M. J. Fowler, S.R. Milward, P. Penfold, R. Locke Q1 SHMS HMS Q2 Q3.
Advertisements

Mezentsev Nikolay Budker Institute of Nuclear Physics
A.KOVALENKO SUPERCONDUCTING MAGNETS for NICA BOOSTER & COLLIDER NICA ROUND TABLE DISCUSSION - 3 JINR, Dubna, November 05, 2008.
SuperKEKB Lattice and Dynamic Aperture H. Koiso Apr. 20, 2005 Super B Factory Workshop in Hawaii.
Magnetic Field Design of a Superconducting Magnet for the FFAG Accelerator T.Obana, T.Ogitsu A,T.Nakamoto A,K.Sasaki A A.Yamamoto A, M.Yoshimoto A, Y.Mori.
PLANS JINR PARTICIPATION for JINR PARTICIPATION FAIR PROJECT: in the FAIR PROJECT: - ACCELERATOR TECHNOLOGY A.Kovalenko 103 session of the JINR Scientific.
UNILAC SIS 18 SIS 100/300 HESR Super FRS NESR CR RESR Sergey Kozub Institute for High Energy Physics Protvino, Russia SIS300 meeting 19 March, 2009 Sergey.
IR Magnets for SuperKEKB KEK, Norihito Ohuchi 1.IR Magnets (ES, QCS, QC1) 2.Interference between Magnet-Cryostats and Belle 3.Summary SuperB.WS05.Hawaii.
Superconducting Large Bore Sextupole for ILC
Magnet designs for Super-FRS and CR
IHEP participation in SIS300 production UNILAC SIS 18 SIS 100/300 HESR Super FRS NESR CR RESR Institute for High Energy Physics Protvino, Russia FAIR meeting.
1 Status of EMMA Shinji Machida CCLRC/RAL/ASTeC 23 April, ffag/machida_ ppt & pdf.
Dynamic Aperture Study for the Ion Ring Lattice Options Min-Huey Wang, Yuri Nosochkov MEIC Collaboration Meeting Fall 2015 Jefferson Lab, Newport News,
Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets.
Superconducting Corrector Magnet Progress Report P. Wanderer Superconducting Magnet Div; Dec. 15, 2007 T2K US B280 collaboration meeting.
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
CERN Accelerator School Superconductivity for Accelerators Case study 1 Paolo Ferracin ( ) European Organization for Nuclear Research.
Superconducting Quadrupoles inside the HERA Experiments M. Bieler, DESY, LHC LUMI 05 Workshop, Arcidosso, September The HERA Interaction Region.
Status of GSI-FAIR Project magnets - open issues - G. Moritz GSI CARE HHH AMT November
GROUP C – Case study no.4 Dr. Nadezda BAGRETS (Karlsruhe Institute of Technology) Dr. Andrea CORNACCHINI (CERN EN Dept.) Mr. Miguel FERNANDES (CERN BE.
SIS 300 Magnet Design Options. Cos n  magnets; cooling with supercritical Helium GSI 001 existing magnet built at BNG measured in our test facility 6.
1 NICA Collider: status and further steps O.S. Kozlov LHEP, JINR, Dubna for the NICA team Machine Advisory Committee, JINR, Dubna, October 19-20, 2015.
Orbit Correctors in D2 and Q4 Update J. Rysti and E. Todesco 1 4/11/2014.
New options for the new D1 magnet Qingjin Xu
Muon Cooling Channel Superconducting Magnet Systems Muon Collider Task Force Meeting on July 31, 2006 V.S. Kashikhin.
CERN Accelerator School Superconductivity for Accelerators Case study 3 Paolo Ferracin ( ) European Organization for Nuclear Research.
Cold test of SIS-300 dipole model Sergey Kozub Institute for High Energy Physics (IHEP), Protvino, Moscow region, Russia.
XFEL X-Ray Free-Electron Laser Bernward Krause MEA WP-12: Warm Magnets WPL: B. Krause.
Prepare specifications/requirements magnetic and mechanical characteristics operation mode Development of Test facility - dedicated test facility to study.
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
CEPC DA due to magnets' error Sha Bai, Dengjie Xiao, Yiwei Wang, Huiping Geng, Dou Wang, Tianjian Bian, Feng Su, Jie Gao The first IHEP-BINP CEPC Accelerator.
IR Magnets for Muon Collider Alexander Zlobin and Vadim Kashikhin Muon Collider Physics Workshop, Fermilab November 12, 2009.
Plans for Diamond-II ESLSXX Workshop, Bessy II, 19 November 2012 R. Bartolini Diamond Light Source and John Adams Institute for Accelerator Science University.
DDBA magnets Chris Bailey Low emittance rings Sept Frascati.
Basic Topics for the Design of the SIS100 Quadrupole Modules MAC - 4 December 1 th - 2 nd, 2010 GSI, Darmstadt Egbert Fischer, Pierre Schnizer, Kei Sugita,
J-Parc Neutrino Facility Primary Proton Beam Design A. K. Ichikawa(KEK), Y.Iwamoto(KEK) and K.Tanabe(Tokyo) et.al. 7 th Nov. 2003,
FNAL Workshop, July 19, 2007 ILC Main Linac Superconducting Quadrupole V.Kashikhin 1 ILC Main Linac Superconducting Quadrupole (ILC HGQ1) V. Kashikhin.
Booster Corrector Review, Oct. 10 th, 2006 E. Prebys Introduction/Specifications Eric Prebys Proton Plan Manager.
Muon Collider Physics Workshop FNAL November 10-12, 2009 Muon Collider Lattice Design FERMI NATIONAL ACCELERATOR LABORATORY US DEPARTMENT OF ENERGY f Y.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS multiplet field.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS magnet configurations.
HTS and LTS Magnet Design and Prototyping for RAON
GSI Helmholtzzentrum für Schwerionenforschung GmbH Dr. Hans Müller Primary Beams, Dept. SC Magnets and Testing (PB-MT) GSI Helmholtzzentrum für Schwerionenforschung.
First evaluation of Dynamic Aperture at injection for FCC-hh
The Super-FRS Multiplet, Magnetic and Cryogenic requirements
Yingshun Zhu Accelerator Center, Magnet Group
Test of a Permanent Magnet Quadrupole Placed in a Dipole Field
J-PARC main ring lattice An overview
Quench Simulation at GSI
FiDeL: the model to predict the magnetic state of the LHC
SC Quadrupole Magnets in ILC Cryomodules
Preliminary Magnetic Analysis of the CCT Magnet for HL-LHC
Development of the Canted Cosine Theta Superconducting Magnet
Powering the LHC Magnets
Main magnets for PERLE Test Facility
Yingshun Zhu Accelerator Center, Magnet Group
FCC-ee Lattice with Misalignments
SCU Next Phase Meeting July 8, 2014.
I. Bogdanov, S. Kozub, V. Pokrovsky, L. Shirshov,
The design of interaction region
CERN Accelerator School Superconductivity for Accelerators Case study 2 Paolo Ferracin European Organization for Nuclear Research.
CEPC main ring magnets’ error effect on DA and MDI issues
CEPC Collider Magnets CHEN, Fusan November 13, 2018.
CEPC Final Focus Superconducting Quadrupole and Anti-solenoid Magnets
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Progress on Non-linear Beam Dynamic Study
Possibility of MEIC Arc Cell Using PEP-II Dipole
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
Sha Bai CEPC AP meeting Work summary Sha Bai CEPC AP meeting
Presentation transcript:

Correctors magnets V. Zubko, IHEP, Protvino SIS 300 Pre-consortium Meeting Thursday 19 March 2009, Protvino

3/1/2016V. Zubko2 Correctors in the SIS 300 arc Main requirements to correctors Operating current < 300 A SIS 300 machines require a large number of corrector magnets These magnets are needed for two main reasons – fine tuning of beam optics, – local or global corrections of alignment and field errors of main magnets

3/1/2016V. Zubko3 Cryomodules containing magnets in cryostat From H. Muller April Types of cryomodules

3/1/2016V. Zubko4 Production of SC correctors at IHEP UNK’s multipole correctors Load lines Diameter of wire 0.3 mm, Ratio Cu/NbTi 1.7, ribbon cable, operating current ≤ 30 A parameters of UNK’s multipole

3/1/2016V. Zubko5 Production of SC correctors at IHEP Dipole correctors for TEL magnetic system Diameter of wire 0.3 mm, Ratio Cu/NbTi 1.7, Cable: 8 SC wires for the short dipoles, 3 SC + 5 Cu wires for the long dipoles, operating current ≤ 30 A

3/1/2016V. Zubko6 Preliminary parameters all Correctors of SIS300 Superconducting wire Operating current ~ 250 A Correctors

3/1/2016V. Zubko7 Shell magnets, horizontal dipole nested inside a vertical dipole Coils with insulated Superconducting wires H/V dipole Number of magnets HEBT (Phase A / B) 78 1 / 5 Physical length0.75 m Effective length0.65 m Aperture105 mm Main field strength0.5 T Ramp time to Max.2.27 sec. Requirements H/V dipole Current [kA]250 Stored energy [J]871 Yoke inner radius, mm62.5 Strength, T0.5 N turns94 Computation results Horizontal and Vertical combined Vertical field Horizontal field Skew field Preliminary parameters of Steering Magnets

3/1/2016V. Zubko8 Preliminary parameters of Chromaticity Sextupoles and Resonance Sextupoles Chrom. Number of magnets24 Physical length0.75 m Effective length0.78 m Aperture105 mm Main field strength*130 T/m 2 Ramp time to Max sec. Requirements Chrom. Current [A]250 Stored energy [J]1376 Yoke inner radius, mm62.5 Strength, T/m N turns32 Computation results Resona. Number of magnets12 Physical length1.0 m Effective length0.975 m Aperture86 mm Main field strength*325 T/m 2 Ramp time to Max.0. 5 sec. Resona. Current [A]250 Stored energy [J]3120 Yoke inner radius, mm52. Strength, T/m N turns45 Shell magnets Coils with insulated Superconducting wires magnetic field

3/1/2016V. Zubko9 Preliminary parameters of Error Compensation Multipole Correctors 2.24 sec sec sec. Ramp time to max. B 4 = 767T/m 3 B 3 = 60T/m 2 B 2 = 1.8T/mMax. field strength* 105 mm Aperture 0.65 m Magnetic length 0.75 m Physical length 12 Number of magnets OctupoleSextupole Quadrupole Nested shell magnets Coils with insulated Superconducting wires Requirements Quad.Sext.Oct. Current [A]250 Stored energy [J] Yoke inner radius, mm 62.5 Strength,1.8 T/m60 T/m T/m 3 N turns11149 Computation results *