The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL.

Slides:



Advertisements
Similar presentations
UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL.
Advertisements

ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
High-energy photon and particle emission from GRBs/SNe Xiang-Yu Wang Nanjing University, China Co-authors: Zhuo Li (Weizmann), Soebur Razzaque (PennState),
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Cosmic rays at the ankle vs GZK … … heavy composition vs anisotropies Martin Lemoine.
Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen.
ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.
High energy cosmic rays & neutrino astronomy Eli Waxman Weizmann Institute.
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
Multi-Messenger Astronomy with GLAST and IceCube Kyler Kuehn, UC-Irvine UCLA GLAST Workshop May 22, 2007.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.
High energy neutrino astronomy: Challenges & Prospects Eli Waxman Weizmann Institute, ISRAEL.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm TeVPA 2012 TIFR Mumbai, India Dec 10-14, 2012 Walter Winter Universität Würzburg.
E. MignecoErice ISCRA, July Introduction to High energy neutrino astronomy Erice ISCRA School 2004 Emilio Migneco.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
10 18 eV Neutrinos associated with UHECR (>10 19 eV) sources Zhuo Li ( 黎卓 ) Peking University, Beijing Collaborators: Eli Waxman & Liming Song Li & Waxman,
The beginning of extra-galactic neutrino astronomy: What have we learned from IceCube’s neutrinos? E. Waxman Weizmann Institute arXiv: arXiv:
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
8 th Jan, NuHoRIzons, HRI, Allahabad Atsushi Watanabe (Harish-Chandra Research Institute) In collaboration with Raj Gandhi (HRI) Abhijit Samanta.
C Alexander Kappes for the IceCube Collaboration 23 rd European Cosmic-Ray Symposium Moscow, 7. July 2012 Neutrino astronomy with the IceCube Observatory.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Ultra High Energy Cosmic Rays -- Origin and Propagation of UHECRs -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
Neutrinos from gamma-ray bursts, and tests of the cosmic ray paradigm GGI seminar Florence, Italy July 2, 2012 Walter Winter Universität Würzburg TexPoint.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
The origin of Cosmic Rays: New developments and old puzzles K. Blum*, B. Katz*, A. Spector, E. Waxman Weizmann Institute *currently at IAS, Princeton.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Models of GRB GeV-TeV emission and GLAST/Swift synergy Xiang-Yu Wang Nanjing University, China Co-authors: Peter Meszaros (PennState), Zhuo Li (PKU), Hao-ning.
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
1st page of proposal with 2 pictures and institution list 1.
PHY418 Particle Astrophysics
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Cosmic Rays High Energy Astrophysics
High energy astronomy and Gamma-ray bursts Eli Waxman Weizmann Institute, ISRAEL.
1 CEA mercredi 26 novembre 2007 Latest news from the Pierre Auger Observatory Nicolas G. Busca - APC - Paris 7.
Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
Search for a Diffuse Flux of TeV to PeV Muon Neutrinos with AMANDA-II Detecting Neutrinos with AMANDA / IceCube Backgrounds for the Diffuse Analysis Why.
Astroparticle Physics (3/3)
L. CazónHadron-Hadron & Cosmic-Rays interactions at multi-TeV energies. Trento,2-Dez Results from the Pierre Auger Observatory L. Cazon, for the.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
Ultra High Energy Cosmic Rays: The disappointing model Askhat Gazizov LNGS, INFN, Italy in collaboration with Roberto Aloisio and Veniamin Berezinsky April.
IceCube’s neutrinos: What we have learned E. Waxman Weizmann Institute.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
High energy & Gravitational wave detectors: New windows on the universe Eli Waxman Weizmann Institute, ISRAEL.
Determining the neutrino flavor ratio at the astrophysical source
The origin of Cosmic Rays: New developments and old puzzles
HAWC Science Survey of 2p sr up to 100 TeV energies Extended Sources
Are Diffuse High Energy Neutrinos from Starburst Galaxies Observable?
Neutrinos as probes of ultra-high energy astrophysical phenomena
ultra high energy cosmic rays: theoretical aspects
Cosmic rays, γ and ν in star-forming galaxies
Predictions of Ultra - High Energy Neutrino fluxes
Presentation transcript:

The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL

High energy  ’ s: A new window MeV detectors: Solar & SN1987A ’ s Stellar physics (Sun ’ s core, SNe core collapse)  physics >0.1 TeV detectors: Extend horizon to extra-Galactic scale MeV detectors limited to local (Galactic) sources 1MeV  TeV,  TeV /  MeV ~10 6 ] Study “ Cosmic accelerators ” [p , pp   ’s  ’s]  physics

The eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Waxman 95, 04, Norman et al. 95] AGN (Steady):  ~ 10 1  L>10 14 L Sun  few brightest ~1/100 Gpc 3  d >> 100Mpc  ?? AGN flares GRB (transient):  ~  L>10 17 L Sun L  ~ L Sun [Farrar & Gruzinov 08] [Blandford 76; Lovelace 76] [Waxman 95, Vietri 95, Milgrom & Usov 95]

GRB: L Sun, M BH ~1M sun, M~1M sun /s,  ~ AGN: L Sun, M BH ~10 9 M sun, M~1M sun /yr,  ~10 1 MQ: 10 5 L Sun, M BH ~1M sun, M~10 -8 M sun /yr,  ~ Source physics Energy extraction Jet acceleration Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms

Clues: CR phenomenology Cosmic-ray E [GeV] log [dJ/dE] E -2.7 E -3 Heavy Nuclei Protons Flattening, Near isotropy, Heavy  light (?) Galactic heavy (“hypernovae”  Z~10 to eV) X-Galactic, ?Light [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00]

Constraints: Flux & Spectrum [Waxman 1995; Bahcall & Waxman 03] [Kashti & Waxman 08]  E sys /E~20% Particle acc.; SFR, AGN, GRB [Berezinsky et al. 08]

Clues: Anisotropy Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [Waxman, Fisher & Piran 1997] Biased (  source ~  gal for  gal >  gal ) [Kashti & Waxman 08] Cross-correlation signal: 98% CL; Consistent with LSS Few fold increase  >99% CL, but not 99.9% CL Correlation with AGN ? VCV catalogue: 99% CL Swift catalogue: 84% (98% a posteriori) CL  low-luminosity AGN? Simply trace LSS! [Auger collaboration 07] [George et al. 08]

>10 19 eV cosmic rays: Clue summary Spectrum (+X max )  likely X-Galactic protons Anisotropy + Spectrum  likely “ Conventional ” sources L constraint  likely Transient sources E p 2 dN/dE p ~ 0.7x10 44 erg/Mpc 3 yr What next for Auger? Identify (narrow spectrum) point source(s)?

HE  Astronomy p +   N +   0  2  ;  +  e + + e +  +   Identify UHECR sources Study BH accretion/acceleration physics E 2 dn/dE=10 44 erg/Mpc 3 yr +   p <1: If X-G p ’ s:  Identify primaries, determine f(z) [Waxman & Bahcall 99; Bahcall & Waxman 01]

AGN models?? BBR05

Experiments Optical Cerenkov - South Pole Amanda: 660 OM, 0.05 km 3 IceCube: +660/yr OM (05/06, 06/07) 4800 OM=1 km 3 s - Mediterranean Antares: 10 lines (Nov 07), 750 OM  0.05 km 3 Nestor: (?)  0.1 km 3 km3Net: R&D  1 km 3 UHE: Radio Air shower Aura, Ariana (in Ice) Auger (  ) ANITA (Balloon) EUSO (?) LOFAR

Generic GRB fireball ’ s If: Baryonic jet, internal shocks (Weak dependence on model parameters) Background free: [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

The current limit [Achterberg et al. 07 (The IceCube collaboration)]

- physics & astro-physics  decay  e :  :  = 1:2:0 (Osc.)  e :  :  = 1:1:1  appearance experiment GRBs: -  timing (10s over Hubble distance) LI to 1:10 16 ; WEP to 1:10 6 EM energy loss of  ’ s (and  ’ s)  e :  :  = 1:1:1 (E>E 0 )  1:2:2  GRBs: E 0 ~10 15 eV Combining E E 0 flavor measurements may constrain CPV [Sin  13 Cos  ] [Waxman & Bahcall 97] [Rachen & Meszaros 98; Kashti & Waxman 05] [Waxman & Bahcall 97; Amelino-Camelia,et al.98; Coleman &.Glashow 99; Jacob & Piran 07] [Blum, Nir & Waxman 05]

Outlook Particle+Astro-phys. Open Q ’ s - >10 11 GeV particles: primaries, f(z), origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ … ) Energy extraction from BH accretion Relativistic plasma physics - “ Conventional ” astrophysics (starburst ISM) -       appearance  Timing  LI to 1:10 16 ; WEP to 1:10 6 Flavor ratios  CPV New HE , CR and detectors >10 3 km 2 hybrid >10 19 eV CR detectors ~1 km 3 (=1Gton) TeV detectors >>1 km 3 [radio, … ] >>1000TeV detectors 10MeV—10GeV  -ray satellite (AGILE, GLAST) >0.1TeV (ground based)  -ray telescopes (Milagro, HESS, MAGIC, VERITAS) Identified point sources Diffuse

Composition clues HiRes 2005

GRB proton/electron acceleration Electrons MeV  ’ s:   <1: e - (  ) spectrum: e - (  )  energy production [Waxman 95, 04] Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production:

The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV  B =(B 2 /8  nT~0.01 (B~0.01  G), B ~10kpc Prediction: p  D B [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

GRB Model Predictions [Miralda-Escude & Waxman 96]

AMANDA & IceCube

The Mediterranean effort ANTARES (NESTOR, NEMO)  KM3NeT

Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA Robert Gendler M82 M81

A lower bound: Star bursts Star burst galaxies: - Star Formation Rate ~10 3 M sun /yr >> 1 M sun /yr “ normal ” (MW) - Density ~10 3 /cc >> 1/cc “ normal ” - B ~1 mG >> 1  G “ normal ” Most stars formed in (z>1.5) star bursts High density + B: CR e - ’ s lose all energy to synchrotron radiation CR p ’ s lose all energy to  production [Loeb & Waxman 06] [Quataert et al. 06]

Synchrotron radio  calibration [Loeb & Waxman 06]