Prentice Hall © 2003Chapter 5 Chapter 5 Thermochemistry CHEMISTRY The Central Science 9th Edition David P. White.

Slides:



Advertisements
Similar presentations
Intro to Thermodynamics
Advertisements

Chapter 5 Thermochemistry
University of North Carolina, Wilmington
Thermochemistry Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall, Inc. Chemistry, The Central.
Thermochemistry Energy The ability to do work or transfer heat.  Work: Energy used to cause an object that has mass to move.  Heat: Energy used to cause.
Chapter 5 Thermochemistry
Prentice Hall © 2003Chapter 5 Chapter 5 Thermochemistry CHEMISTRY The Central Science 9th Edition David P. White.
Chapter 5 Thermochemistry
Chapter 51 Chapter 6 Thermochemistry Jozsef Devenyi Department of Chemistry, UTM.
Thermochemistry Chapter 6 AP Chemistry Seneca Valley SHS.
Copyright 2000, PRENTICE HALL Chapter 51 These are the remaining slides from class, but beginning with slide 22, there is another presentation from another.
AP Chapter 5 Thermochemistry HW:
Chemistry 101 : Chap. 5 Thermochemistry (1) The Nature of Energy (2) The First Law of Thermodynamics (3) Enthalpy (4) Enthalpy of Reaction (5) Calorimetry.
Thermodynamics: Energy Relationships in Chemistry The Nature of Energy What is force: What is work: A push or pull exerted on an object An act or series.
Chapter 5 Thermochemistry
Chapter 5 Thermochemistry
Energy and Chemical Reactions
Thermochemistry.
Thermochemistry. Kinetic Energy and Potential Energy Kinetic energy is the energy of motion: Potential energy is the energy an object possesses by virtue.
Thermochemistry Chapter 5.
Chapter 5 Thermodynamics
Thermochemistry Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall, Inc. Chemistry, The Central.
Conservation of Energy. Energy Energy is: the ability (or capacity) of a system to do work or supply (or produce) heat.the ability (or capacity) of a.
Chapter 5 Thermochemistry. Topics  Energy and energy changes  Introduction to thermodynamics  Enthalpy  Calorimetry  Hess’s Law  Standard enthalpies.
Thermochemistry © 2009, Prentice-Hall, Inc. Chapter 16 Thermochemistry.
© 2015 Pearson Education, Inc. Chapter 5 Thermochemistry James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation.
Chapter 5: thermochemistry By Keyana Porter Period 2 AP Chemistry.
Prentice Hall © 2003Chapter 5 Chapter 6 Thermochemistry CHEMISTRY.
Thermochemistry © 2009, Prentice-Hall, Inc. Chapter 11 Thermochemistry.
Thermochemistry Chapter 6 Thermochemistry. Thermochemistry Energy The ability to do work or transfer heat.  Work: Energy used to cause an object that.
Thermochemistry Chapter 5 Thermochemistry. Thermochemistry Energy The ability to do work or transfer heat.  Work: Energy used to cause an object that.
Thermochemistry. Energy Energy is the ability to do work or transfer heat. – Energy used to cause an object that has mass to move is called work. – Energy.
Chapter 5 Thermochemistry. Energy of objects Objects can possess 2 kinds of energy. KE= energy of motion E k = ½ mv 2 PE= stored energy (energy of position)
Thermochemistry © 2009, Prentice-Hall, Inc. Chapter 4 Thermochemistry  Thermodynamics Dr.Imededdine Arbi Nehdi Chemistry Department, Science College,
Chapter 5 Thermochemistry. Energy Energy is the ability to do work or transfer heat. –Energy used to cause an object that has mass to move is called work.
© 2015 Pearson Education, Inc. Chapter 5 Thermochemistry James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation.
Thermochemistry © 2009, Prentice-Hall, Inc. Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College Cottleville, MO Chemistry, The Central.
Thermochemistry Chapter 5 Energy The ability to do work or transfer heat. –Work: Energy used to cause an object that has mass to move. –Heat: Energy.
6.1 Nature of Energy. What is Energy? Energy is defined as the capacity to do work or to produce heat Types of energy Potential and Kinetic Energy.
March 26, 2014 Introduction to Thermochemistry But first, a little fun mlQ
Thermochemistry. Kinetic Energy and Potential Energy Kinetic energy is the energy of motion: Potential energy is the energy an object possesses by virtue.
Chapter 51 Thermochemistry. 2 The Nature of Energy From Physics: Force – a kind of push or pull on an object. Energy – the capacity to do work. Work –
Thermochemistry © 2009, Prentice-Hall, Inc. Topic 9 Thermochemistry.
Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson Education, Inc.
Thermochemistry Work We can measure the work done by the gas if the reaction is done in a vessel that has been fitted with a piston. w = −P  V.
Thermochemistry Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall, Inc. Chemistry, The Central.
Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson Education, Inc.
THERMOCHEMISTRY CHAPTER : THE NATURE OF ENERGY Energy: ability to do work WorkWork: energy used to cause an object to move against a force HeatHeat:
Prentice Hall © 2003Chapter 5 Chapter 5 Thermochemistry.
Thermochemistry © 2009, Prentice-Hall, Inc. Thermochemistry.
Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson Education, Inc.
Chapter 5 Thermochemistry John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson Education, Inc.
Chapter 6 Thermochemistry: pp The Nature of Energy Energy – Capacity to do work or produce heat. – 1 st Law of Thermodynamics: Energy can.
Chapter 5 Thermochemistry
Chapter 5 Thermochemistry
Chapter 5 Thermochemistry
Mr. Kinton Honors Chemistry
Chapter 5 Thermochemistry
University of North Carolina, Wilmington
Chapter 5 Thermochemistry
Chapter 5 Thermochemistry
Chapter 5 Thermochemistry
Jeff Venables Northwestern High School
Chapter 5 Thermochemistry
Chapter 5 Thermochemistry
Presentation transcript:

Prentice Hall © 2003Chapter 5 Chapter 5 Thermochemistry CHEMISTRY The Central Science 9th Edition David P. White

Prentice Hall © 2003Chapter 5 Kinetic Energy and Potential Energy Kinetic energy is the energy of motion: Potential energy is the energy an object possesses by virtue of its position. Potential energy can be converted into kinetic energy. Example: a bicyclist at the top of a hill. The Nature of Energy

Prentice Hall © 2003Chapter 5 Kinetic Energy and Potential Energy Electrostatic potential energy, E d, is the attraction between two oppositely charged particles, Q 1 and Q 2, a distance d apart: The constant  = 8.99  10 9 J-m/C 2. If the two particles are of opposite charge, then E d is the electrostatic repulsion between them. The Nature of Energy

Prentice Hall © 2003Chapter 5 Units of Energy SI Unit for energy is the joule, J: We sometimes use the calorie instead of the joule: 1 cal = J (exactly) A nutritional Calorie: 1 Cal = 1000 cal = 1 kcal The Nature of Energy

Prentice Hall © 2003Chapter 5 Systems and Surroundings System: part of the universe we are interested in. Surroundings: the rest of the universe. The Nature of Energy

Prentice Hall © 2003Chapter 5 Transferring Energy: Work and Heat Force is a push or pull on an object. Work is the product of force applied to an object over a distance: Energy is the work done to move an object against a force. Heat is the transfer of energy between two objects. Energy is the capacity to do work or transfer heat. The Nature of Energy

Prentice Hall © 2003Chapter 5 Internal Energy Internal Energy: total energy of a system. Cannot measure absolute internal energy. Change in internal energy, The First Law of Thermodynamics

Prentice Hall © 2003Chapter 5 Relating  E to Heat and Work Energy cannot be created or destroyed. Energy of (system + surroundings) is constant. Any energy transferred from a system must be transferred to the surroundings (and vice versa). From the first law of thermodynamics: when a system undergoes a physical or chemical change, the change in internal energy is given by the heat added to or absorbed by the system plus the work done on or by the system: The First Law of Thermodynamics

Prentice Hall © 2003Chapter 5 Exothermic and Endothermic Processes Endothermic: absorbs heat from the surroundings. Exothermic: transfers heat to the surroundings. An endothermic reaction feels cold. An exothermic reaction feels hot. The First Law of Thermodynamics

Prentice Hall © 2003Chapter 5 State Functions State function: depends only on the initial and final states of system, not on how the internal energy is used. The First Law of Thermodynamics

State Functions

Prentice Hall © 2003Chapter 5 Chemical reactions can absorb or release heat. However, they also have the ability to do work. For example, when a gas is produced, then the gas produced can be used to push a piston, thus doing work. Zn(s) + 2H + (aq)  Zn 2+ (aq) + H 2 (g) The work performed by the above reaction is called pressure-volume work. When the pressure is constant, Enthalpy

Enthalpy

Prentice Hall © 2003Chapter 5 Enthalpy, H: Heat transferred between the system and surroundings carried out under constant pressure. Enthalpy is a state function. If the process occurs at constant pressure, Enthalpy

Prentice Hall © 2003Chapter 5 Since we know that We can write When  H, is positive, the system gains heat from the surroundings. When  H, is negative, the surroundings gain heat from the system. Enthalpy

Prentice Hall © 2003Chapter 5 Enthalpy

Prentice Hall © 2003Chapter 5 For a reaction: Enthalpy is an extensive property (magnitude  H is directly proportional to amount): CH 4 (g) + 2O 2 (g)  CO 2 (g) + 2H 2 O(g)  H = -802 kJ 2CH 4 (g) + 4O 2 (g)  2CO 2 (g) + 4H 2 O(g)  H =  1604 kJ Enthalpies of Reaction

Prentice Hall © 2003Chapter 5 When we reverse a reaction, we change the sign of  H: CO 2 (g) + 2H 2 O(g)  CH 4 (g) + 2O 2 (g)  H = +802 kJ Change in enthalpy depends on state: 2H 2 O(g)  2H 2 O(l)  H = -88 kJ Enthalpies of Reaction

Prentice Hall © 2003Chapter 5 Heat Capacity and Specific Heat Calorimetry = measurement of heat flow. Calorimeter = apparatus that measures heat flow. Heat capacity = the amount of energy required to raise the temperature of an object (by one degree). Molar heat capacity = heat capacity of 1 mol of a substance. Specific heat = specific heat capacity = heat capacity of 1 g of a substance. Calorimetry

Prentice Hall © 2003Chapter 5 Constant Pressure Calorimetry Atmospheric pressure is constant! Calorimetry

Prentice Hall © 2003Chapter 5 Calorimetry Constant Pressure Calorimetry

Prentice Hall © 2003Chapter 5 Calorimetry Reaction carried out under constant volume. Use a bomb calorimeter. Usually study combustion. Bomb Calorimetry (Constant Volume Calorimetry)

Prentice Hall © 2003Chapter 5 Hess’s law: if a reaction is carried out in a number of steps,  H for the overall reaction is the sum of  H for each individual step. For example: CH 4 (g) + 2O 2 (g)  CO 2 (g) + 2H 2 O(g)  H = -802 kJ 2H 2 O(g)  2H 2 O(l)  H = -88 kJ CH 4 (g) + 2O 2 (g)  CO 2 (g) + 2H 2 O(l)  H = -890 kJ Hess’s Law

Prentice Hall © 2003Chapter 5 Note that:  H 1 =  H 2 +  H 3 Hess’s Law

Prentice Hall © 2003Chapter 5 If 1 mol of compound is formed from its constituent elements, then the enthalpy change for the reaction is called the enthalpy of formation,  H o f. Standard conditions (standard state): 1 atm and 25 o C (298 K). Standard enthalpy,  H o, is the enthalpy measured when everything is in its standard state. Standard enthalpy of formation: 1 mol of compound is formed from substances in their standard states. Enthalpies of Formation

Prentice Hall © 2003Chapter 5 If there is more than one state for a substance under standard conditions, the more stable one is used. Standard enthalpy of formation of the most stable form of an element is zero. Enthalpies of Formation

Prentice Hall © 2003Chapter 5 Enthalpies of Formation

Prentice Hall © 2003Chapter 5 Using Enthalpies of Formation of Calculate Enthalpies of Reaction We use Hess’ Law to calculate enthalpies of a reaction from enthalpies of formation. Enthalpies of Formation

Prentice Hall © 2003Chapter 5 Using Enthalpies of Formation of Calculate Enthalpies of Reaction For a reaction Enthalpies of Formation

Prentice Hall © 2003Chapter 5 Foods Fuel value = energy released when 1 g of substance is burned. 1 nutritional Calorie, 1 Cal = 1000 cal = 1 kcal. Energy in our bodies comes from carbohydrates and fats (mostly). Intestines: carbohydrates converted into glucose: C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O,  H = kJ Fats break down as follows: 2C 57 H 110 O O 2  114CO H 2 O,  H = -75,520 kJ Foods and Fuels

Prentice Hall © 2003Chapter 5 Foods Fats: contain more energy; are not water soluble, so are good for energy storage. Foods and Fuels

Prentice Hall © 2003Chapter 5 Fuels In 2000 the United States consumed 1.03  kJ of fuel. Most from petroleum and natural gas. Remainder from coal, nuclear, and hydroelectric. Fossil fuels are not renewable. Foods and Fuels

Prentice Hall © 2003Chapter 5 Foods and Fuels

Prentice Hall © 2003Chapter 5 Fuels Fuel value = energy released when 1 g of substance is burned. Hydrogen has great potential as a fuel with a fuel value of 142 kJ/g. Foods and Fuels

Prentice Hall © 2003Chapter 5 End of Chapter 5: Thermochemistry