66th IETF, Montreal, July 2006 PCE Working Group Meeting IETF-66, July 2006, Montreal A Backward Recursive PCE-based Computation (BRPC) procedure to compute.

Slides:



Advertisements
Similar presentations
APNOMS03 1 A Resilient Path Management for BGP/MPLS VPN Jong T. Park School of Electrical Eng. And Computer Science Kyungpook National University
Advertisements

OSPF TE Extension for Area IDs draft-lu-ospf-area-tlv-00.txt IETF 80 - Prague, Czech Republic March 27 – April 1, 2011 Wenhu Lu.
Page - 1 Stateful PCE Kexin Tang Xuerong Wang Yuanlin Bao ZTE Corporation draft-tang-pce-stateful-pce-01.txt.
RSVP-TE Extensions for SRLG Configuration of FA
Limit for content Do not exceed Limit for content Do not exceed Limit for content Do not exceed Limit for content Do not exceed 1 Aria Networks Multi-domain.
Page 1 iPOP2009, Tokyo, Japan Selecting Domain Paths in Inter-Domain MPLS-TE and GMPLS Adrian Farrel, Old Dog Consulting Daniel King, Old Dog Consulting.
1 68th IETF, Prague, March 2007 Graceful Shutdown in MPLS Traffic Engineering Networks draft-ietf-ccamp-mpls-graceful-shutdown-02.txt Zafar Ali
© 2006 Cisco Systems, Inc. All rights reserved. MPLS v2.2—8-1 MPLS TE Overview Introducing the TE Concept.
MPLS/GMPLS Migration and Interworking CCAMP, IETF 64 Kohei Shiomoto,
Requirement and protocol for WSON and non-WSON interoperability CCAMP WG, IETF 81th, Quebec City, Canada draft-shimazaki-ccamp-wson-interoperability-00.
1 draft-ali-ccamp-rc-objective-function-metric-bound-02.txt draft-ali-ccamp-rsvp-te-include-route-02.txt draft-ali-ccamp-xro-lsp-subobject-02.txt CCAMP.
Draft-li-isdnrg-seamless-mpls-mbh-00IETF 92 SDNRG1 Inter-SDN in Seamless MPLS for Mobile Backhaul Zhenbin Li, Rober Tao Huawei Technologies IETF 92, Dallas,
December 20, 2004MPLS: TE and Restoration1 MPLS: Traffic Engineering and Restoration Routing Zartash Afzal Uzmi Computer Science and Engineering Lahore.
A General approach to MPLS Path Protection using Segments Ashish Gupta Ashish Gupta.
SMUCSE 8344 Constraint-Based Routing in MPLS. SMUCSE 8344 Constraint Based Routing (CBR) What is CBR –Each link a collection of attributes (performance,
MATE: MPLS Adaptive Traffic Engineering Anwar Elwalid, et. al. IEEE INFOCOM 2001.
66th IETF Montreal July 2006 Requirements for delivering MPLS services Over L3VPN draft-kumaki-l3VPN-e2e-mpls-rsvp-te-reqts-01.txt Kenji Kumaki KDDI, Editor.
Kenji Kumaki KDDI, Editor Raymond Zhang BT Nabil Bitar Verizon
November th Diego Requirements for delivering MPLS services over L3VPN draft-kumaki-l3VPN-e2e-mpls-rsvp-te-reqts-02.txt Kenji Kumaki KDDI,
IETF 68, MPLS WG, Prague P2MP MPLS-TE Fast Reroute with P2MP Bypass Tunnels draft-leroux-mpls-p2mp-te-bypass-01.txt J.L. Le Roux (France Telecom) R. Aggarwal.
66th IETF Montreal July 2006 Analysis of Inter-domain Label Switched Path (LSP) Recovery draft-takeda-ccamp-inter-domain-recovery-analysis-00.txt Tomonori.
Extensions to OSPF-TE for Inter-AS TE draft-ietf-ccamp-ospf-interas-te-extension-01.txt Mach Renhai
Forward-Search P2P/P2MP TE LSP Inter-Domain Path Computation draft-chen-pce-forward-search-p2p-path-computation draft-chen-pce-forward-search-p2mp-path.
CCAMP WG, IETF 81th, Quebec City, Canada draft-zhang-ccamp-gmpls-evolving-g txt Authors & Contributors GMPLS Signaling Extensions for the Evolving.
1 IETF-61 – Washington DC Path Computation Element (PCE) BOF-2 Status - CCAMP Co-chairs: JP Vasseur/Adrian Farrel ADs: Alex Zinin/Bill Fenner.
1 IETF- 56 – TE WG- SAN FRANCISCO Inter-AS MPLS Traffic Engineering draft-vasseur-inter-AS-TE-00.txt Jean-Philippe Vasseur – Cisco Systems Raymond Zhang.
63nd IETF Paris August 2005 LSP Stitching with Generalized MPLS TE draft-ietf-ccamp-lsp-stitching-01.txt Arthi Ayyangar
PCE-based Computation Procedure To Compute Shortest Constrained P2MP Inter-domain Traffic Engineering Label Switched Paths draft-zhao-pce-pcep-inter-domain-p2mp-procedures-02.txt.
PCE Traffic Engineering Database Requirements draft-dugeon-pce-ted-reqs-01.txt O. Dugeon, J. Meuric (France Telecom / Orange) R. Douville (Alcatel-Lucent)
Signaling Extensions for Wavelength Switched Optical Networks draft-bernstein-ccamp-wson-signaling-02.txt Greg BernsteinGrotto Networking Young LeeHuawei.
1 Requirements for GMPLS-based multi-region and multi-layer networks (MRN/MLN) draft-ietf-ccamp-gmpls-mln-reqs-01.txt CCAMP WG, IETF 66 Jul. 10, 2006 Kohei.
PCE-based Computation for Inter-domain P2MP LSP draft-zhao-pce-pcep-inter-domain-p2mp-procedures-00.txt Quintin Zhao, Huawei Technology David Amzallag,
IETF-74, San Francisco, March 2009 PCE Working Group Meeting IETF-74, March 2009, San Francisco Online Agenda and Slides at:
Draft-oki-pce-vntm-def-00.txt 1 Definition of Virtual Network Topology Manager (VNTM) for PCE-based Inter-Layer MPLS and GMPLS Traffic Engineering draft-oki-pce-vntm-def-00.txt.
LDP extension for Inter-Area LSP draft-decraene-mpls-ldp-interarea-04 Bruno DecraeneFrance Telecom / Orange Jean-Louis Le RouxFrance Telecom / Orange Ina.
Inter-area MPLS TE Architecture and Protocol Extensions
69th IETF, Chicago, July 2007 PCE Working Group Meeting IETF-69, July 2007, Chicago Online Agenda and Slides at: bin/wg/wg_proceedings.cgi.
Path Computation Element Metric Protocol (PCEMP) (draft-choi-pce-metric-protocol-02.txt) Jun Kyun Choi and Dipnarayan Guha
Inter-AS PCE Requirements draft-bitar-zhang-interas-PCE-req-01.txt Nabil Bitar (Verizon) Dean Cheng (Cisco) Kenji Kumaki (KDDI) Raymond Zhang (BT Infonet)
Limit for content Do not exceed Limit for content Do not exceed Limit for content Do not exceed Limit for content Do not exceed Page 1 © The.
1 77th IETF, CCAMP WG, Anaheim, CA, USA March 2010 Signaling RSVP-TE P2MP LSPs in an Inter- domain Environment draft-ali-mpls-inter-domain-p2mp-rsvp-te-lsp-03.txt.
What do we put in the TED? Which TE links from the network should appear in the Traffic Engineering Database at a Label Switching Router? An attempt to.
Forward-Search P2P TE LSP Inter- Domain Path Computation draft-chen-pce-forward-search-p2p-path-computation Huaimo Chen
Extensions to PCEP for Hierarchical Path Computation Elements PCE draft-zhang-pcep-hierarchy-extensions-00 Fatai Zhang Quintin Zhao.
Requirements for PCE Discovery draft-leroux-pce-discovery-reqs-00.txt Jean-Louis Le Roux (France Telecom) Paul Mabey (Qwest) Eiji Oki (NTT) Ting Wo Chung.
The Application of the Path Computation Element Architecture to the Determination of a Sequence of Domains in MPLS & GMPLS draft-ietf-pce-hierarchy-fwk-00.txt.
The Application of the Path Computation Element Architecture to the Determination of a Sequence of Domains in MPLS & GMPLS draft-king-pce-hierarchy-fwk-01.txt.
66th IETF Montreal July 2006 Analysis of Inter-domain Label Switched Path (LSP) Recovery draft-takeda-ccamp-inter-domain-recovery-analysis-00.txt Tomonori.
61st IETF Washington DC, Nov GMPLS Inter-domain Traffic Engineering Requirements GMPLS Inter-domain Traffic Engineering Requirements draft-otani-ccamp-interas-gmpls-te-01.txt.
1 draft-ali-ccamp-te-metric-recording-02.txt CCAMP – IETF 84 – Vancouver July - August 2012 Zafar Ali Cisco Systems Clarence Filsfils  Cisco Systems Kenji.
11/13/2003draft-ietf-tewg-interas-mpls-te-req- 01.txt 1 Inter-AS MPLS TE Requirements draft-ietf-tewg-interas-mpls-te-req-01.txt IETF 58, Minneapolis
Extensions to Path Computation Element Communication Protocol (PCEP) for Hierarchical Path Computation Elements (PCE) PCE WG, IETF 86th draft-zhang-pce-hierarchy-extensions-03.
60th IETF, San Diego, August 2004 OSPF MPLS Traffic Engineering capabilities draft-vasseur-ospf-te-caps-00.txt Jean-Philippe Vasseur
60th IETF San Diego August 2004 TE parameters to be exchanged between GMPLS-controlled ASes draft-otani-ccamp-interas-gmpls-te-00.txt Tomohiro Otani
Daniel King, Old Dog Consulting Adrian Farrel, Old Dog Consulting
IETF 67, MPLS WG, San Diego 11/08/2006
Jean-Philippe Vasseur – Cisco Systems Raymond Zhang - Infonet
P2MP MPLS-TE Fast Reroute with P2MP Bypass Tunnels
Tomohiro Otani Kenji Kumaki Satoru Okamoto Wataru Imajuku
PCE Working Group Meeting IETF-67, November 2006, San Diego
Daniel King, Old Dog Consulting Adrian Farrel, Old Dog Consulting
Daniel King, Old Dog Consulting Adrian Farrel, Old Dog Consulting
CCAMP WG Meeting IETF 58 - Minneapolis - Nov’03
Protection & Restoration Design Team - CCAMP WG
OSPF Extensions for ASON Routing draft-ietf-ccamp-gmpls-ason-routing-ospf-03.txt IETF67 - Prague - Mar’07 Dimitri.
PLR Designation in RSVP-TE FRR
Separating Routing Planes using Segment Routing draft-gulkohegde-spring-separating-routing-planes-using-sr-00 IETF 98 – Chicago, USA Shraddha Hegde
YANG Data Models for TE and RSVP draft-ietf-teas-yang-te-08 draft-ietf-teas-yang-rsvp-07 draft-ietf-teas-yang-rsvp-te-01
Path Computation Element WG Status
Presentation transcript:

66th IETF, Montreal, July 2006 PCE Working Group Meeting IETF-66, July 2006, Montreal A Backward Recursive PCE-based Computation (BRPC) procedure to compute shortest inter-domain Traffic Engineering Label Switched Path draft-vasseur-pce-brpc-01.txt JP Vasseur Raymond Zhang Nabil Bitar Jean-Louis Le Roux

66th IETF, Montreal, July 2006 A bit of history … “Yes” … history … Solution first presented in draft-vasseur-inter-as- te-00.txt - IETF 56 - SF - March  Inter-AS MPLS Traffic Engineering requirements draft: draft- zhang-mpls-interas-te-req-02.txt (TE WG)  Inter-AS MPLS Traffic Engineering (solution draft): draft-vasseur-inter-AS-te-00.txt (WG to be decided once inter-AS reqs draft adopted as a WG doc) Scenario 1: per-AS TE LSP Path computation Scenario 2: distributed path computation server draft-ietf-inter-domain-pd- path-comp draft-vasseur-pce-brpc- 01.txt

66th IETF, Montreal, July 2006 Where does this document fit in the charter ? This is about inter-domain TE LSP path computation, which belongs to CCAMP but using PCE discussed in the PCE WG Proposal: discuss this ID in PCE with a review of CCAMP In term of requirements … See RFC 4105 See RFC Path Optimality In the context of this requirement document, an optimal path is defined as the shortest path across multiple areas, taking into account either the IGP or TE metric [METRIC]. In other words, such a path is the path that would have been computed by making use of some CSPF algorithm in the absence of multiple IGP areas. As mentioned in Section 5.2, the solution SHOULD provide the capability to compute an optimal path dynamically, satisfying a set of specified constraints (defined in [TE- REQ]) across multiple IGP areas. Note that this requirement document does not mandate that all inter-area TE LSPs require the computation of an optimal (shortest) inter-area path Optimality The solution SHOULD allow the set-up of an inter-AS TE LSP that complies with a set of TE constraints defined in [TE-REQ]) and follows an optimal path. An optimal path is defined as a path whose end-to-end cost is minimal, based upon either an IGP or a TE metric. Note that in the case of an inter-AS path across several ASes having completely different IGP metric policies, the notion of minimal path might require IGP metric normalization. The solution SHOULD provide mechanism(s) to compute and establish an optimal end-to-end path for the inter-AS TE LSP and SHOULD also allow for reduced optimality (or sub- optimality) since the path may not remain optimal for the lifetime of the LSP.

66th IETF, Montreal, July 2006 Where does this document fit in the charter ? Support of diverse Inter-domain paths See RFC 4105 See RFC Support of Diversely-Routed Inter-Area TE LSPs … Thus, the solution MUST be able to establish diversely- routed inter-area TE LSPs when diverse paths exist. It MUST support all kinds of diversity (link, node, SRLG). The solution SHOULD allow computing an optimal placement of diversely-routed LSPs. There may be various criteria to determine an optimal placement. For instance, the placement of two diversely routed LSPs for load- balancing purposes may consist of minimizing their cumulative cost. The placement of two diversely-routed LSPs for protection purposes may consist of minimizing the cost of the primary LSP while bounding the cost or hop count of the backup LSP Support of Diversely Routed Inter-AS TE LSP Setting up multiple inter-AS TE LSPs between a pair of LSRs might be desirable when: (1) a single TE LSP satisfying the required set of constraints cannot be found, in which case it may require load sharing; (2) multiple TE paths may be required to limit the impact of a network element failure to a portion of the traffic (as an example, two VoIP gateways may load balance the traffic among a set of inter-AS TE LSPs); (3) path protection (e.g., 1:1 or 1:N) as discussed in [MPLS- Recov]. In the examples above, being able to set up diversely routed TE LSPs becomes a requirement for inter-AS TE. The solution SHOULD be able to set up a set of link/SRLG/Node diversely routed inter-AS TE LSPs.

66th IETF, Montreal, July 2006 Summary: Number of editorial changes in this new revision: Thanks to Adrian for the thorough review that led to several editorial changes New changes: … This document specifies a procedure relying on the use of multiple Path Computation Elements (PCEs) in order to compute such inter-domain shortest constraint paths along a determined sequence of domains, using a backward recursive path computation technique while preserving confidentiality across domains, which is sometimes required when domains are managed by different Service Providers... Clarification on the VSPT computation (Step i) - Inter-domain TE links has as a prerequisite the knowledge) Path computation procedure is quite stable Next revision will cover in more details the path diversity issue+ slight procedural modification to support bidirectional LSPs (GMPLS) + New Manageability section Proposed Next Steps Adopt the ID as a WG document ?