Inverse Variation. A relationship that can be written in the form y =, where k is a nonzero constant and x ≠ 0, is an inverse variation. The constant.

Slides:



Advertisements
Similar presentations
Identifying Quadratic Functions
Advertisements

Direct Variation.
Objectives Graph functions given a limited domain.
Identify, write, and graph an equation of direct variation.
Algebra1 Graphing Functions
Identifying Linear Functions
Warm Up Lesson Presentation Lesson Quiz.
Direct Variation 5-4. Vocabulary Direct variation- a linear relationship between two variable that can be written in the form y = kx or k =, where k 
Warm Up Solve each equation. 2.4 = x x = 1.8(24.8)
Copyright © Cengage Learning. All rights reserved. Graphs; Equations of Lines; Functions; Variation 3.
Warm Up Lesson Presentation Lesson Quiz Class work/Homework.
Holt Algebra Identifying Quadratic Functions 9-1 Identifying Quadratic Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Holt Algebra Identifying Linear Functions 5-1 Identifying Linear Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Preview Warm Up California Standards Lesson Presentation.
Vocabulary direct variation constant of variation
Direct and Inverse Variations Direct Variation When we talk about a direct variation, we are talking about a relationship where as x increases, y increases.
SOLUTION Write an inverse variation equation EXAMPLE 5 x–5–34824 y2.44–3–1.5–0.5 Tell whether the table represents inverse variation. If so, write the.
PRE-ALGEBRA. Lesson 8-4 Warm-Up PRE-ALGEBRA What is a “direct variation”? How do you find the constant, k, of a direct variation given a point on its.
9-1 Quadratic Equations and Functions Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Identifying Quadratic Functions. The function y = x 2 is shown in the graph. Notice that the graph is not linear. This function is a quadratic function.
12-1 Inverse Variation Warm Up Lesson Presentation Lesson Quiz
9-1 Quadratic Equations and Functions Solutions of the equation y = x 2 are shown in the graph. Notice that the graph is not linear. The equation y = x.
Identifying Linear Functions
Direct Variation Honors Math – Grade 8. Get Ready for the Lesson It costs $2.25 per ringtone that you download on your cell phone. If you graph the ordered.
Lesson 4-6 Warm-Up.
Inverse Variation ALGEBRA 1 LESSON 8-10 (For help, go to Lesson 5-5.)
Direct Variation Warm Up Lesson Presentation Lesson Quiz
ALGEBRA READINESS LESSON 8-6 Warm Up Lesson 8-6 Warm-Up.
5.3 Function Rules, Tables, & Graphs. List some pairs of numbers that will satisfy the equation x + y = 4. x = 1 and y = 3 x = 2 and y = 2 x = 4 and y.
3-4 Graphing Functions Warm Up Lesson Presentation Lesson Quiz
Direct and Inverse.
Variation Functions Essential Questions
Algebra1 Direct Variation
12.1 Warm Up Warm Up Lesson Quiz Lesson Quiz Lesson Presentation Lesson Presentation Model Inverse Variation.
5-8 Extension: Inverse Variation Lesson Presentation Lesson Presentation.
5-4 Direct Variation Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
5-4 Direct Variation Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day Lesson Quizzes Lesson Quizzes.
Holt Algebra Identifying Linear Functions 5-1 Identifying Linear Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Holt Algebra Relations and Functions 4-2 Relations and Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
4-4 Graphing Functions Warm Up Lesson Presentation Lesson Quiz
LESSON 12-1 INVERSE VARIATION Algebra I Ms. Turk Algebra I Ms. Turk.
4-1 Identifying Linear Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Algebra 1.
Warm Up Solve each proportion The value of y varies directly with x, and y = – 6 when x = 3. Find y when x = – The value of y varies.
Warm Up Solve each proportion The value of y varies directly with x, and y = – 6 when x = 3. Find y when x = – The value of y varies.
Holt Algebra Inverse Variation Entry Task Solve each proportion
Warm Up Solve each equation for y. 1. 2x + y = 3 2. –x + 3y = –6
Direct Variation 5-5 Warm Up Lesson Presentation Lesson Quiz
Direct Variation 5-6 Warm Up Lesson Presentation Lesson Quiz
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
A relationship that can be written in the form y = , where k is a nonzero constant and x ≠ 0, is an inverse variation. The constant k is the constant.
A relationship that can be written in the form y = , where k is a nonzero constant and x ≠ 0, is an inverse variation. The constant k is the constant.
Direct Variation 4-5 Warm Up Lesson Presentation Lesson Quiz
Math CC7/8 – April 24 Math Notebook: Things Needed Today (TNT):
Inverse Variations Unit 4 Day 8.
Warm Up Solve for y y = 2x 2. 6x = 3y
Vocabulary direct variation constant of variation
Splash Screen.
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3.
Vocabulary direct variation constant of variation
Direct Variation 4-5 Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve for y y = 2x 2. 6x = 3y y = 2x – 3 y = 2x
Direct Variation 4-5 Warm Up Lesson Presentation Lesson Quiz
Direct Variation Warm Up Lesson Presentation Lesson Quiz
Objective Identify, write, and graph direct variation.
Direct Variation 4-5 Warm Up Lesson Presentation Lesson Quiz
LESSON 12-1 INVERSE VARIATION
Direct Variation Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve for y y = 2x 2. 6x = 3y y = 2x – 3 y = 2x
Direct Variation 4-5 Warm Up Lesson Presentation Lesson Quiz
Presentation transcript:

Inverse Variation

A relationship that can be written in the form y =, where k is a nonzero constant and x ≠ 0, is an inverse variation. The constant k is the constant of variation. Inverse variation implies that one quantity will increase while the other quantity will decrease (the inverse, or opposite, of increase). Multiplying both sides of y = by x gives xy = k. So, for any inverse variation, the product of x and y is a nonzero constant.

There are two methods to determine whether a relationship between data is an inverse variation. You can write a function rule in y = form, or you can check whether xy is a constant for each ordered pair.

Example 1: Identifying an Inverse Variation Tell whether each relationship is an inverse variation. Explain. Method 1 Write a function rule. Can write in y = form. The relationship is an inverse variation. Method 2 Find xy for each ordered pair. 1(30) = 30, 2(15) = 30, 3(10) = 30 The product xy is constant, so the relationship is an inverse variation.

Example 2: Identifying an Inverse Variation Tell whether each relationship is an inverse variation. Explain. Method 1 Write a function rule. Cannot write in y = form. The relationship is not an inverse variation. y = 5x Method 2 Find xy for each ordered pair. 1(5) = 5, 2(10) = 20, 4(20) = 80 The product xy is not constant, so the relationship is not an inverse variation.

Example 3: Identifying an Inverse Variation Tell whether each relationship is an inverse variation. Explain. 2xy = 28 Find xy. Since xy is multiplied by 2, divide both sides by 2 to undo the multiplication. xy = 14 Simplify. xy equals the constant 14, so the relationship is an inverse variation.

Tell whether each relationship is an inverse variation. Explain. Method 1 Write a function rule. Cannot write in y = form. The relationship is not an inverse variation. y = – 2x Method 2 Find xy for each ordered pair. – 12 (24) = – 228, 1( – 2) = – 2, 8( – 16) = – 128 The product xy is not constant, so the relationship is not an inverse variation. Example 4

Tell whether each relationship is an inverse variation. Explain. Example 5 Method 1 Write a function rule. Can write in y = form. The relationship is an inverse variation. Method 2 Find xy for each ordered pair. 3(3) = 9, 9(1) = 9, 18(0.5) = 9 The product xy is constant, so the relationship is an inverse variation.

2x + y = 10 Tell whether each relationship is an inverse variation. Explain. Example 6 Cannot write in y = form. The relationship is not an inverse variation.

An inverse variation can also be identified by its graph. Some inverse variation graphs are shown. Notice that each graph has two parts that are not connected. Also notice that none of the graphs contain (0, 0). This is because (0, 0) can never be a solution of an inverse variation equation.

Example 7: Graphing an Inverse Variation Write and graph the inverse variation in which y = 0.5 when x = – 12. Step 1 Find k. k = xy = – 12(0.5) Write the rule for constant of variation. Substitute –12 for x and 0.5 for y. = – 6 Step 2 Use the value of k to write an inverse variation equation. Write the rule for inverse variation. Substitute –6 for k.

Example 7 Continued Write and graph the inverse variation in which y = 0.5 when x = – 12. Step 3 Use the equation to make a table of values. y –2 –4 x –1– undef. –6–6 –3–3 – 1.5

Example 7 Continued Write and graph the inverse variation in which y = 0.5 when x = – 12. Step 4 Plot the points and connect them with smooth curves. ● ● ● ● ● ●

Example 8 Write and graph the inverse variation in which y = when x = 10. Step 1 Find k. k = xy Write the rule for constant of variation. = 5 Substitute 10 for x and for y. = 10 Step 2 Use the value of k to write an inverse variation equation. Write the rule for inverse variation. Substitute 5 for k.

Write and graph the inverse variation in which y = when x = 10. Step 3 Use the equation to make a table of values. Example 8 Continued x –4–2–10124 y –1.25–2.5–5undef

Example 8 Continued Step 4 Plot the points and connect them with smooth curves. Write and graph the inverse variation in which y = when x = 10. ● ● ● ● ● ●

Example 9: Transportation Application The inverse variation xy = 350 relates the constant speed x in mi/h to the time y in hours that it takes to travel 350 miles. Determine a reasonable domain and range and then graph this inverse variation. Use the graph to estimate how long it will take to travel 350 miles driving 55 mi/h. Step 1 Solve the function for y so you can graph it. xy = 350 Divide both sides by x.

Example 9 Continued Step 2 Decide on a reasonable domain and range. x > 0 y > 0 Length is never negative and x ≠ 0 Because x and xy are both positive, y is also positive. Step 3 Use values of the domain to generate reasonable ordered pairs y x

Example 9 Continued Step 4 Plot the points. Connect them with a smooth curve. ● ● ● ● Step 5 Find the y-value where x = 55. When the speed is 55 mi/h, the travel time is about 6 hours.

Example 10 The inverse variation xy = 100 represents the relationship between the pressure x in atmospheres (atm) and the volume y in mm ³ of a certain gas. Determine a reasonable domain and range and then graph this inverse variation. Use the graph to estimate the volume of the gas when the pressure is 40 atmospheric units. Step 1 Solve the function for y so you can graph it. xy = 100 Divide both sides by x.

Step 2 Decide on a reasonable domain and range. x > 0 y > 0 Pressure is never negative and x ≠ 0 Because x and xy are both positive, y is also positive. Step 3 Use values of the domain to generate reasonable pairs y x Example 10 Continued

Step 4 Plot the points. Connect them with a smooth curve. Example 10 Continued Step 5 Find the y-value where x = 40. When the pressure is 40 atm, the volume of gas is about 2.5 mm 3. ● ● ● ●

Example 11: Using the Product Rule Let and Let y vary inversely as x. Find Write the Product Rule for Inverse Variation. Substitute 5 for 3 for and 10 for. Simplify. Solve for by dividing both sides by 5. Simplify.

Example 12 Write the Product Rule for Inverse Variation. Simplify. Substitute 2 for –4 for and –6 for Let and Let y vary inversely as x. Find Solve for by dividing both sides by –4.

Example 13: Physics Application Boyle ’ s law states that the pressure of a quantity of gas x varies inversely as the volume of the gas y. The volume of gas inside a container is 400 in 3 and the pressure is 25 psi. What is the pressure when the volume is compressed to 125 in 3 ? Use the Product Rule for Inverse Variation. Substitute 400 for 125 for and 25 for Simplify. Solve for by dividing both sides by 125. (400)(25) = (125)y 2

Example 13 Continued Boyle ’ s law states that the pressure of a quantity of gas x varies inversely as the volume of the gas y. The volume of gas inside a container is 400 in 3 and the pressure is 25 psi. What is the pressure when the volume is compressed to 125 in 3 ? When the gas is compressed to 125 in 3, the pressure increases to 80 psi.

Example 14 On a balanced lever, weight varies inversely as the distance from the fulcrum to the weight. The diagram shows a balanced lever. How much does the child weigh?

Example 14 Continued Use the Product Rule for Inverse Variation. Substitute 3.2 for, 60 for and 4.3 for Simplify. Solve for by dividing both sides by 3.2. Simplify. The child weighs lb.

Lesson Quiz: Part I 1. Write and graph the inverse variation in which y = 0.25 when x = 12.

Lesson Quiz: Part II 2. The inverse variation xy = 210 relates the length y in cm to the width x in cm of a rectangle with an area of 210 cm 2. Determine a reasonable domain and range and then graph this inverse variation. Use the graph to estimate the length when the width is 14 cm.

Lesson Quiz: Part III 3. Let x 1 = 12, y 1 = – 4, and y 2 = 6, and let y vary inversely as x. Find x 2. –8–8