Volumes by Slicing. disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the.

Slides:



Advertisements
Similar presentations
Section Volumes by Slicing
Advertisements

Volumes by Slicing: Disks and Washers
Disk and Washer Methods
Disks, Washers, and Cross Sections Review
Section Volumes by Slicing
More on Volumes & Average Function Value. Average On the last test (2), the average of the test was: FYI - there were 35 who scored a 9 or 10, which means.
 A k = area of k th rectangle,  f(c k ) – g(c k ) = height,  x k = width. 6.1 Area between two curves.
Volumes – The Disk Method Lesson 7.2. Revolving a Function Consider a function f(x) on the interval [a, b] Now consider revolving that segment of curve.
7.1 Areas Between Curves To find the area: divide the area into n strips of equal width approximate the ith strip by a rectangle with base Δx and height.
Applications of Integration
Section 6.1 Volumes By Slicing and Rotation About an Axis
APPLICATIONS OF INTEGRATION
7.1 Area Between 2 Curves Objective: To calculate the area between 2 curves. Type 1: The top to bottom curve does not change. a b f(x) g(x) *Vertical.
Volume: The Disk Method
TOPIC APPLICATIONS VOLUME BY INTEGRATION. define what a solid of revolution is decide which method will best determine the volume of the solid apply the.
7.3 Day One: Volumes by Slicing Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice.
3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top.
7.3 Volumes Quick Review What you’ll learn about Volumes As an Integral Square Cross Sections Circular Cross Sections Cylindrical Shells Other Cross.
Finding Volumes.
Review: Volumes of Revolution. x y A 45 o wedge is cut from a cylinder of radius 3 as shown. Find the volume of the wedge. You could slice this wedge.
Section Volumes by Slicing
Volume: The Shell Method Lesson 7.3. Find the volume generated when this shape is revolved about the y axis. We can’t solve for x, so we can’t use a horizontal.
Section 7.2 Solids of Revolution. 1 st Day Solids with Known Cross Sections.
7.3 Volumes by Cylindrical Shells
7.2 Volumes APPLICATIONS OF INTEGRATION In this section, we will learn about: Using integration to find out the volume of a solid.
7.3 VOLUMES. Solids with Known Cross Sections If A(x) is the area of a cross section of a solid and A(x) is continuous on [a, b], then the volume of the.
7.3 day 2 Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania.
Application of integration. G.K. BHARAD INSTITUTE OF ENGINEERING Prepared by :- (1) Shingala nital (2) Paghdal Radhika (3) Bopaliya Mamata.
Volumes of Revolution Disks and Washers
7.3 Day One: Volumes by Slicing. Volumes by slicing can be found by adding up each slice of the solid as the thickness of the slices gets smaller and.
Lesson 6-2a Volumes Known Cross-sectional Areas. Ice Breaker Find the volume of the region bounded by y = 1, y = x² and the y-axis revolved about the.
The Area Between Two Curves Lesson 6.1. When f(x) < 0 Consider taking the definite integral for the function shown below. The integral gives a ___________.
Volume: The Disk Method
Volumes of Revolution The Shell Method Lesson 7.3.
Solids of Revolution Disk Method
VOLUME BY DISK or disc BY: Nicole Cavalier & Alex Nuss.
Volume: The Disc Method
Ch 7.3 Volumes Calculus Graphical, Numerical, Algebraic by
Let R be the region bounded by the curve y = e x/2, the y-axis and the line y = e. 1)Sketch the region R. Include points of intersection. 2) Find the.
Volumes By Cylindrical Shells Objective: To develop another method to find volume without known cross-sections.
Volumes Using Cross-Sections Solids of Revolution Solids Solids not generated by Revolution Examples: Classify the solids.
Finding Volumes Chapter 6.2 February 22, In General: Vertical Cut:Horizontal Cut:
Volumes Lesson 6.2.
Volume: The Shell Method
Disks, Washers and Shells Limerick Nuclear Generating Station, Pottstown, Pennsylvania.
Augustin Louis Cauchy 1789 – 1857 Augustin Louis Cauchy 1789 – 1857 Cauchy pioneered the study of analysis, both real and complex, and the theory of permutation.
Volumes by Slicing 7.3 Solids of Revolution.
Section Volumes by Slicing 7.3 Solids of Revolution.
Ch. 8 – Applications of Definite Integrals 8.3 – Volumes.
Volumes of Solids with Known Cross Sections
Chapter Area between Two Curves 7.2 Volumes by Slicing; Disks and Washers 7.3 Volumes by Cylindrical Shells 7.4 Length of a Plane Curve 7.5 Area.
Volume of Regions with cross- sections an off shoot of Disk MethodV =  b a (π r 2 ) dr Area of each cross section (circle) * If you know the cross.
6.2 - Volumes Roshan. What is Volume? What do we mean by the volume of a solid? How do we know that the volume of a sphere of radius r is 4πr 3 /3 ? How.
SECTION 7-3-C Volumes of Known Cross - Sections. Recall: Perpendicular to x – axis Perpendicular to y – axis.
 The volume of a known integrable cross- section area A(x) from x = a to x = b is  Common areas:  square: A = s 2 semi-circle: A = ½  r 2 equilateral.
6.3 Volumes by Cylindrical Shells. Find the volume of the solid obtained by rotating the region bounded,, and about the y -axis. We can use the washer.
Calculus 6-R Unit 6 Applications of Integration Review Problems.
7.2 Volume: The Disk Method (Day 3) (Volume of Solids with known Cross- Sections) Objectives: -Students will find the volume of a solid of revolution using.
Drill: Find the area in the 4 th quadrant bounded by y=e x -5.6; Calculator is Allowed! 1) Sketch 2) Highlight 3) X Values 4) Integrate X=? X=0 X=1.723.
Finding Volumes.
Finding Volumes Chapter 6.2 February 22, 2007.
Warm-Up! Find the average value of
Volumes – The Disk Method
Volumes of Revolution The Shell Method
Applications Of The Definite Integral
Area & Volume Chapter 6.1 & 6.2 February 20, 2007.
Volumes of Revolution The Shell Method
6.1 Areas Between Curves To find the area:
Section Volumes by Slicing
Presentation transcript:

Volumes by Slicing

disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the volume of revolution using the shell method known cross sections Find the volume of a solid with known cross sections Volume of REVOLUTION

These are a few of the many industrial uses for volumes of revolutions.

Volume of the washer R r

Examp le: Find the volume of the solid formed by revolving the region bounded by y =  x and y = x² over the interval [0, 1] about the x – axis.

The region between the curve, and the y -axis is revolved about the y -axis. Find the volume. y x We use a horizontal disk. The thickness is dy. The radius is the x value of the function. volume of disk Example of rotating the region about y-axis

Example: rotate it around x = axis

The natural draft cooling tower shown at left is about 500 feet high and its shape can be approximated by the graph of this equation revolved about the y-axis: The volume can be calculated using the disk method with a horizontal disk.

Find the volume of the solid generated by revolving the regions about the x-axis. bounded by

Find the volume of the solid generated by revolving the regions about the x-axis.bounded by

Find the volume of the solid generated by revolving the regions about the y-axis. bounded by

Find the volume of the solid generated by revolving the regions about the line y = -1.bounded by

The region bounded by and is revolved about the y-axis. Find the volume. The “disk” now has a hole in it, making it a “washer”. If we use a horizontal slice: The volume of the washer is: outer radius inner radius Example of a washer

If the same region is rotated about the line x = 2 : The outer radius is: R The inner radius is: r

The volume of the solid generated by revolving the first quadrant region bounded by the curve and the lines x = ln 3 and y = 1 about the x-axis is closest to a) 2.79 b) 2.82 c) 2.85 d) 2.88 e) 2.91 CALCULATOR REQUIRED

Volumes by Cylindrical Shells

Shell Method Based on finding volume of cylindrical shells –Add these volumes to get the total volume Dimensions of the shell –Radius of the shell –Thickness of the shell –Height

The Shell Consider the shell as one of many of a solid of revolution The volume of the solid made of the sum of the shells f(x) g(x) x f(x) – g(x) dx

Hints for Shell Method Sketch the graph over the limits of integration Draw a typical shell parallel to the axis of revolution Determine radius, height, thickness of shell Volume of typical shell Use integration formula

Consider the region bounded by x = 0, y = 0, and

Rotation About x-Axis Rotate the region bounded by y = 4x and y = x 2 about the x-axis What are the dimensions needed? –radius –height –thickness radius = y thickness = dy

Rotation About Non-coordinate Axis Possible to rotate a region around any line Rely on the basic concept behind the shell method x = a f(x) g(x)

Rotation About Non-coordinate Axis What is the radius? What is the height? What are the limits? The integral: x = a f(x) g(x) a – x f(x) – g(x) x = c r c < x < a

Rotate the region bounded by 4 – x 2, x = 0 and, y = 0 about the line x = 2 Determine radius, height, limits 4 – x 2 r = 2 - x

u = x – 1 x = 1 u=0 x = u + 1 x = 2 u=1 du = dx

Blobs in Space Volume of a blob: Cross sectional area at height h: A(h) Volume =

Volumes with cross-sections: We will be given a “boundary” for the base of the shape which will be used to find a length. We will use that length to find the area of a figure generated from the slice. The dy or dx will be used to represent the thickness. The volumes from the slices will be added together to get the total volume of the figure.

Procedure: volume by slicing o sketch the solid and a typical cross section o find a formula for the area, A(x), of the cross section o find limits of integration o integrate A(x) to get volume

Find the volume of the solid whose bottom face is the circle and every cross section perpendicular to the x-axis is a square. Bounds? Top Function? Bottom Function? [-1,1] Length?

We use this length to find the area of the square. Length? Area? Volume?

Using the half circle [0,1] as the base slices perpendicular to the x-axis are isosceles right triangles. Length? Area? Volume? Bounds? [0,1]

Find the volume of a solid whose base is the circle x 2 + y 2 = 4 and where cross sections perpendicular to the x-axis are all squares whose sides lie on the base of the circle. First, find the length of a side of the square the distance from the curve to the x-axis is half the length of the side of the square … solve for y length of a side is :

Find the volume of a solid whose base is the circle x 2 + y 2 = 4 and where cross sections perpendicular to the x-axis are all squares whose sides lie on the base of the circle.

The base of the solid is the region between the curve and the interval [0,π] on the x-axis. The cross sections perpendicular to the x-axis are equilateral triangles with bases running from the x-axis to the curve. Bounds: Top Function: Bottom Function: [0,π] Length: Area of an equilateral triangle:

Find the volume of a solid whose base is the circle x 2 + y 2 = 4 and where cross sections perpendicular to the x-axis are all equilateral triangles whose sides lie on the base of the circle.

Find the volume of a solid whose base is the circle x 2 + y 2 = 4 and where cross sections perpendicular to the x-axis are all semicircles whose sides lie on the base of the circle.

Find the volume of a solid whose base is the circle x 2 + y 2 = 4 and where cross sections perpendicular to the x-axis are all Isosceles right triangles whose sides lie on the base of the circle.

Let R be the region marked in the first quadrant enclosed by the y-axis and the graphs of as shown in the figure below R a)Setup but do not evaluate the integral representing the volume of the solid generated when R is revolved around the x-axis. b)Setup, but do not evaluate the integral representing the volume of the solid whose base is R and whose cross sections perpendicular to the x-axis are squares.

CALCULATOR REQUIRED

NO CALCULATOR

Let R be the region in the first quadrant under the graph of a) Find the area of R. b)The line x = k divides the region R into two regions. If the part of region R to the left of the line is 5/12 of the area of the whole region R, what is the value of k? c)Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x-axis are squares. CALCULATOR REQUIRED

Let R be the region in the first quadrant under the graph of a) Find the area of R.

Let R be the region in the first quadrant under the graph of b)The line x = k divides the region R into two regions. If the part of region R to the left of the line is 5/12 of the area of the whole region R, what is the value of k? A

Let R be the region in the first quadrant under the graph of c)Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the x-axis are squares.

Let R be the region in the first quadrant bounded above by the graph of f(x) = 3 cos x and below by the graph of a)Setup, but do not evaluate, an integral expression in terms of a single variable for the volume of the solid generated when R is revolved about the x-axis. b)Let the base of a solid be the region R. If all cross sections perpendicular to the x-axis are equilateral triangles, setup, but do not evaluate, an integral expression of a single variable for the volume of the solid.