Wednesday, Feb. 8, 2012PHYS 1444-004, Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #7 Wednesday, Feb. 8, 2012 Dr. Alden Stradeling Chapter.

Slides:



Advertisements
Similar presentations
Electrical Energy and Electric Potential AP Physics C.
Advertisements

Wednesday, Oct. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #16 Wednesday, Oct. 26, 2005 Dr. Jaehoon Yu Charged Particle.
February 16, 2010 Potential Difference and Electric Potential.
Chapter 22 Electric Potential.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Copyright © 2009 Pearson Education, Inc. Lecture 4 – Electricity & Magnetism b. Electric Potential.
Electrical Energy and Electric Potential
Electric Energy and Capacitance
Thursday, Sept. 1, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #3 Thursday, Sept. 1, 2011 Dr. Jaehoon Yu Chapter 21 –The.
PHYS 1444 Lecture #3 Tuesday, June 12, 2012 Ryan Hall
Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #8 Monday, Feb. 13, 2012 Dr. Jae Yu Chapter Chapter 23.
Electric Potential and Electric Energy Chapter 17.
Monday, Mar. 27, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #16 Monday, Mar. 27, 2006 Dr. Jaehoon Yu Sources of Magnetic.
Electrical Energy and Potential IB Physics. Electric Fields and WORK In order to bring two like charges near each other work must be done. In order to.
Monday, Sept. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #8 Monday, Sept. 26, 2005 Dr. Jaehoon Yu Capacitors Determination.
Wednesday, Feb. 15, 2012 PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #9 Wednesday, Feb. 15, 2012 Dr. Jae Yu Capacitors.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Monday, Jan. 30, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #4 Monday, Jan. 30, 2012 Dr. Jaehoon Yu Chapter 21 –Electric.
Wednesday, Feb. 1, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #5 Wednesday, Feb. 1, 2012 Dr. Jaehoon Yu Chapter 22.
Thursday, Nov. 3, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #18 Thursday, Nov. 3, 2011 Dr. Jaehoon Yu Torque on a Current.
Weds., Jan. 29, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #5 Wednesday January 29, 2014 Dr. Andrew Brandt CH 17 Electric Potential.
Wednesday, Sept. 7, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #3 Monday, Sept. 7, 2005 Dr. Jaehoon Yu Motion of a.
Wednesday, Jan. 31, PHYS , Spring 2007 Dr. Andrew Brandt PHYS 1444 – Section 004 Lecture #4 Gauss’ Law Gauss’ Law with many charges What.
Tuesday, Sept. 13, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #7 Tuesday, Sept. 13, 2011 Dr. Jaehoon Yu Chapter 22.
Thursday, Sept. 22, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #10 Thursday, Sept. 22, 2011 Dr. Jaehoon Yu Chapter 23.
Thursday March 31, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #16 Thursday Mar 31, 2011 Dr. Andrew Brandt HW7 Ch 27 is due Fri.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Monday, Feb. 13, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #8 Monday, Feb. 13, 2006 Dr. Jaehoon Yu Capacitors and.
Wednesday, Sept. 21, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #7 Wednesday, Sept. 21, 2005 Dr. Jaehoon Yu Electric.
1 PHYS 1444 Lecture #4 Chapter 23: Potential Shape of the Electric Potential V due to Charge Distributions Equi-potential Lines and Surfaces Electric Potential.
Thursday, Sept. 15, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #8 Thursday, Sept. 15, 2011 Dr. Jaehoon Yu Chapter 23.
Electrical Energy and Potential
今日課程內容 CH21 電荷與電場 電場 電偶極 CH22 高斯定律 CH23 電位.
Wednesday, Sep. 14, PHYS Dr. Andrew Brandt PHYS 1444 – Section 04 Lecture #5 Chapter 21: E-field examples Chapter 22: Gauss’ Law Examples.
Wednesday, Jan. 25, 2012 PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #3 Wednesday, Jan. 25, 2012 Dr. Jaehoon Yu Chapter.
Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #7 Wednesday, Feb. 8, 2006 Dr. Jaehoon Yu Equi-potential.
Chapter 21 Electric Potential.
Monday, June 10, 2013PHYS , Summer 2013 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #5 Monday, June 10, 2013 Dr. Jaehoon Yu Chapter 17 –Electric.
Electric Field.
Monday, Jan. 30, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #4 Monday, Jan. 30, 2012 Dr. Jaehoon Yu Chapter 21 –Electric.
Tuesday, Sept. 20, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #9 Tuesday, Sept. 20, 2011 Dr. Jaehoon Yu Chapter 23 Electric.
Weds. Feb. 28, 2007PHYS , Spring 2007 Dr. Andrew Brandt 1 PHYS 1444 – Section 004 Review #1 Wednesday Feb. 28, 2007 Dr. Andrew Brandt 1.Test Monday.
Chapter 25 Electric Potential. Electrical Potential Energy The electrostatic force is a conservative force, thus It is possible to define an electrical.
Monday, Sept. 19, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #6 Monday, Sept. 19, 2005 Dr. Jaehoon Yu Electric Potential.
Thursday, Sept. 8, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #6 Thursday, Sept. 8, 2011 Dr. Jaehoon Yu Chapter 21 –Electric.
Monday, Sep. 19, PHYS Dr. Andrew Brandt PHYS 1444 – Section 004 Lecture #6 Chapter 23: Monday Sep. 19, 2011 Dr. Andrew Brandt Electric.
Wednesday, June 8, 2016PHYS , Summer 2016 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #3 Wednesday, June 8, 2016 Dr. Jaehoon Yu Chapter 21.
Wednesday, June 15, 2016 PHYS , Summer 2016 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #7 Wednesday, June 15, 2016 Dr. Jaehoon Yu Chapter.
Thursday, June 16, 2016PHYS , Summer 2016 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Friday, June 16, 2016 Dr. Jaehoon Yu Chapter 23 Electric.
PHYS 1441 – Section 001 Lecture #5
PHYS 1444 – Section 003 Lecture #4
PHYS 1441 – Section 001 Lecture #8
PHYS 1444 – Section 501 Lecture #16
PHYS 1441 – Section 001 Lecture #7
PHYS 1444 – Section 501 Lecture #5
PHYS 1444 – Section 003 Lecture #9
PHYS 1442 – Section 001 Lecture #4
Chapter 23 Electric Potential
PHYS 1444 – Section 501 Lecture #6
PHYS 1444 – Section 003 Lecture #7
PHYS 1444 – Section 002 Lecture #9
Relation Between Electric Potential V & Electric Field E
PHYS 1444 – Section 002 Lecture #8
PHYS 1441 – Section 002 Lecture #6
PHYS 1444 – Section 002 Lecture #8
PHYS 1444 – Section 003 Lecture #16
PHYS 1441 – Section 001 Lecture #7
PHYS 1444 – Section 003 Lecture #3
PHYS 1441 – Section 001 Lecture #6
Presentation transcript:

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #7 Wednesday, Feb. 8, 2012 Dr. Alden Stradeling Chapter 23 Electric Potential –Electric Potential & Electric Field –Electric Potential due to Point Charges –Shape of the Electric Potential –V due to Charge Distributions –Equi-potential Lines and Surfaces –Electric Potential Due to Electric Dipole

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 2 Announcements First term exam –5:30 – 6:50pm, Wednesday, Feb. 22 –SH103 –CH21.1 through what we learn on Monday, Feb. 20 plus appendices A and B Reading assignments –CH23.9

Reminder: Special Project Particle Accelerator. A charged particle of mass M with charge -Q is accelerated in the uniform field E between two parallel charged plates whose separation is D as shown in the figure on the right. The charged particle is accelerated from an initial speed v 0 near the negative plate and passes through a tiny hole in the positive plate. –Derive the formula for the electric field E to accelerate the charged particle to a fraction f of the speed of light c. Express E in terms of M, Q, D, f, c and v 0. –(a) Using the Coulomb force and kinematic equations. (8 points) –(b) Using the work-kinetic energy theorem. ( 8 points) –(c) Using the formula above, evaluate the strength of the electric field E to accelerate an electron from 0.1% of the speed of light to 90% of the speed of light. You need to look up the relevant constants, such as mass of the electron, charge of the electron and the speed of light. (5 points) Due beginning of the class Monday, Feb. 13 Wednesday, Feb. 8, PHYS , Spring 2012 Dr. Jaehoon Yu

Monday, Feb. 6, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 4 Electric Potential and Electric Field The effect of a charge distribution can be described in terms of electric field or electric potential. –What kind of quantities are the electric field and the electric potential? Electric Field: Electric Potential: –Since electric potential is a scalar quantity, it is often easier to handle. Well other than the above, what are the connections between these two quantities? Vector Scalar

Monday, Feb. 6, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 5 Electric Potential and Electric Field The potential energy is expressed in terms of a conservative force For the electrical case, we are more interested in the potential difference: –This formula can be used to determine V ba when the electric field is given. When the field is uniform and parallel to the path or Unit of the electric field in terms of potential? V/mCan you derive this from N/C?

Monday, Feb. 6, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 6 50V 5cm Example 23 – 3 Uniform electric field obtained from voltage: Two parallel plates are charged to a voltage of 50V. If the separation between the plates is 5.0cm, calculate the magnitude of the electric field between them, ignoring any fringe effect. What is the relationship between electric field and the potential for a uniform field? Solving for E

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 7 Electric Potential due to Point Charges What is the electric field by a single point charge Q at a distance r? Electric potential due to the field E for moving from point ra ra to rb rb in radial direction away from the charge Q is

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 8 Electric Potential due to Point Charges Since only the differences in potential have physical meaning, we can choose at. The electrical potential V at a distance r from a single point charge Q is So the absolute potential by a single point charge can be thought of the potential difference by a single point charge between r and infinity

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 9 Properties of the Electric Potential What are the differences between the electric potential and the electric field? –Electric potential Electric potential energy per unit charge Inversely proportional to the distance Simply add the potential by each of the charges to obtain the total potential from multiple charges, since potential is a scalar quantity –Electric field Electric force per unit charge Inversely proportional to the square of the distance Need vector sums to obtain the total field from multiple charges Potential for the positive charge is larger near the charge and decreases towards 0 at large distance. Potential for the negative charge is large negative near the charge and increases towards 0 at a large distance.

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 10 Shape of the Electric Potential So, how does the electric potential look like as a function of distance? –What is the formula for the potential by a single charge? Positive Charge Negative Charge Uniformly charged sphere would have the potential the same as a single point charge. What does this mean? Uniformly charged sphere behaves like all the charge is on the single point in the center.

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 11 Since we obtain Example 23 – 6 Work to bring two positive charges close together: What minimum work is required by an external force to bring a charge q=3.00 μ C from a great distance away (r=∞) to a point 0.500m from a charge Q=20.0 μ C? What is the work done by the electric field in terms of potential energy and potential? Electric force does negative work. In other words, the external force must work +1.08J to bring the charge 3.00  C from infinity to 0.500m to the charge 20.0  C.

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 12 Electric Potential by Charge Distributions Let’s consider a case of n individual point charges in a given space and V=0 at r=∞. Then the potential V ia due to the charge Qi Qi at a point a, distance r ia from Qi Qi is Thus the total potential Va Va by all n point charges is For a continuous charge distribution, we obtain

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 13 Example 23 – 8 Potential due to a ring of charge : A thin circular ring of radius R carries a uniformly distributed charge Q. Determine the electric potential at a point P on the axis of the ring a distance x from its center. Each point on the ring is at the same distance from the point P. What is the distance? So the potential at P is What’s this?

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 14 Equi-potential Surfaces Electric potential can be graphically shown using the equipotential lines in 2-D or the equipotential surfaces in 3-D Any two points on the equipotential surfaces (lines) are on the same potential What does this mean in terms of the potential difference? –The potential difference between two points on an equipotential surface is 0. How about the potential energy difference? –Also 0. What does this mean in terms of the work to move a charge along the surface between these two points? –No work is necessary to move a charge between these two points.

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 15 Equi-potential Surfaces An equipotential surface (line) must be perpendicular to the electric field. Why? –If there are any parallel components to the electric field, it would require work to move a charge along the surface. Since the equipotential surface (line) is perpendicular to the electric field, we can draw these surfaces or lines easily. Since there can be no electric field within a conductor in a static case, the entire volume of a conductor must be at the same potential. So the electric field must be perpendicular to the conductor surface. Point charges Parallel Plate Just like a topological map

Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 16 Electric Potential due to Electric Dipoles What is an electric dipole? –Two equal point charge Q of opposite signs separated by a distance l and behaves like one entity: P=Q l For the electric potential due to a dipole at a point p –We take V=0 at r=∞ The simple sum of the potential at p by the two charges is Since Δ r= l cos  and if r>> l, r>> Δ r, thus r~r+ Δ r and V by a dipole at a distance r from the dipole