Graphs and Paths : Chapter 15 Saurav Karmakar

Slides:



Advertisements
Similar presentations
CS16: Introduction to Data Structures & Algorithms
Advertisements

Depth-First Search1 Part-H2 Depth-First Search DB A C E.
Graph Theory.
CS 206 Introduction to Computer Science II 03 / 27 / 2009 Instructor: Michael Eckmann.
Graphs Chapter 12. Chapter Objectives  To become familiar with graph terminology and the different types of graphs  To study a Graph ADT and different.
Chapter 8, Part I Graph Algorithms.
Graph Search Methods Spring 2007 CSE, POSTECH. Graph Search Methods A vertex u is reachable from vertex v iff there is a path from v to u. A search method.
© 2006 Pearson Addison-Wesley. All rights reserved14 A-1 Chapter 14 excerpts Graphs (breadth-first-search)
Graphs.
Graph.
CS 206 Introduction to Computer Science II 11 / 11 / Veterans Day Instructor: Michael Eckmann.
Graph & BFS.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
CS 206 Introduction to Computer Science II 11 / 03 / 2008 Instructor: Michael Eckmann.
Graph Traversals CSC 172 SPRING 2002 LECTURE 26. Traversing graphs Depth-First Search like a post-order traversal of a tree Breath-First Search Less like.
CS 206 Introduction to Computer Science II 11 / 05 / 2008 Instructor: Michael Eckmann.
CS 206 Introduction to Computer Science II 03 / 25 / 2009 Instructor: Michael Eckmann.
CS Data Structures Chapter 6 Graphs.
Graph Traversals CSC 172 SPRING 2004 LECTURE 21. Announcements  Project 3 is graded  handed back Tuesday  Grad spam, tonight – if you are really anxious.
Fall 2007CS 2251 Graphs Chapter 12. Fall 2007CS 2252 Chapter Objectives To become familiar with graph terminology and the different types of graphs To.
CS 206 Introduction to Computer Science II 03 / 30 / 2009 Instructor: Michael Eckmann.
Review of Graphs A graph is composed of edges E and vertices V that link the nodes together. A graph G is often denoted G=(V,E) where V is the set of vertices.
C o n f i d e n t i a l HOME NEXT Subject Name: Data Structure Using C Unit Title: Graphs.
GRAPHS Education is what remains after one has forgotten what one has learned in school. Albert Einstein Albert Einstein Smitha N Pai.
November 6, Algorithms and Data Structures Lecture XI Simonas Šaltenis Aalborg University
Copyright Networking Laboratory Chapter 6. GRAPHS Horowitz, Sahni, and Anderson-Freed Fundamentals of Data Structures in C, 2nd Edition Computer.
Been-Chian Chien, Wei-Pang Yang, and Wen-Yang Lin 6-1 Chapter 6 Graphs Introduction to Data Structure CHAPTER 6 GRAPHS 6.1 The Graph Abstract Data Type.
GRAPHS CSE, POSTECH. Chapter 16 covers the following topics Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component,
Chapter 14 Graphs. © 2004 Pearson Addison-Wesley. All rights reserved Terminology G = {V, E} A graph G consists of two sets –A set V of vertices,
Graphs1 Definitions Examples The Graph ADT LAX PVD LAX DFW FTL STL HNL.
Graphs. What is a graph? A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other The set of.
 What is a graph? What is a graph?  Directed vs. undirected graphs Directed vs. undirected graphs  Trees vs graphs Trees vs graphs  Terminology: Degree.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Graphs.
GRAPHS 1. Outline 2  Undirected Graphs and Directed Graphs  Depth-First Search  Breadth-First Search.
CISC 235: Topic 9 Introduction to Graphs. CISC 235 Topic 92 Outline Graph Definition Terminology Representations Traversals.
1 Subgraphs A subgraph S of a graph G is a graph such that The vertices of S are a subset of the vertices of G The edges of S are a subset of the edges.
Graphs A graphs is an abstract representation of a set of objects, called vertices or nodes, where some pairs of the objects are connected by links, called.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver Chapter 13: Graphs Data Abstraction & Problem Solving with C++
1 Directed Graphs Chapter 8. 2 Objectives You will be able to: Say what a directed graph is. Describe two ways to represent a directed graph: Adjacency.
COSC 2007 Data Structures II
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
Graphs Slide credits:  K. Wayne, Princeton U.  C. E. Leiserson and E. Demaine, MIT  K. Birman, Cornell U.
GRAPHS. Graph Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree Types of graphs: undirected,
© 2006 Pearson Addison-Wesley. All rights reserved 14 A-1 Chapter 14 Graphs.
Introduction to Programming
Graphs Upon completion you will be able to:
Chapter 20: Graphs. Objectives In this chapter, you will: – Learn about graphs – Become familiar with the basic terminology of graph theory – Discover.
Chapter 05 Introduction to Graph And Search Algorithms.
November 19, Algorithms and Data Structures Lecture XI Simonas Šaltenis Nykredit Center for Database Research Aalborg University
Department of Computer Engineering Faculty of Engineering, Prince of Songkla University Graphs Original Slides by Rada Mihalcea.
CHAPTER 13 GRAPH ALGORITHMS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
Graph Theory Def: A graph is a set of vertices and edges G={V,E} Ex. V = {a,b,c,d,e} E = {ab,bd,ad,ed,ce,cd} Note: above is a purely mathematical definition.
Lecture #13. Topics 1.The Graph Abstract Data Type. 2.Graph Representations. 3.Elementary Graph Operations.
Review Graph Directed Graph Undirected Graph Sub-Graph Spanning Sub-Graph Degree of a Vertex Weighted Graph Elementary and Simple Path Link List Representation.
Graphs ORD SFO LAX DFW Graphs 1 Graphs Graphs
CSC 172 DATA STRUCTURES.
BCA-II Data Structure Using C Submitted By: Veenu Saini
Data Structures & Algorithm Analysis lec(8):Graph T. Souad alonazi
Data Structures 13th Week
CS120 Graphs.
CMSC 341 Lecture 21 Graphs (Introduction)
Graphs.
Graphs.
Graphs.
What is a Graph? a b c d e V= {a,b,c,d,e} E= {(a,b),(a,c),(a,d),
Depth-First Search Graph Traversals Depth-First Search DFS.
What is a Graph? a b c d e V= {a,b,c,d,e} E= {(a,b),(a,c),(a,d),
GRAPHS.
INTRODUCTION A graph G=(V,E) consists of a finite non empty set of vertices V , and a finite set of edges E which connect pairs of vertices .
Presentation transcript:

Graphs and Paths : Chapter 15 Saurav Karmakar

What is a Graph? a b c d e V= {a,b,c,d,e} E= {(a,b),(a,c),(a,d), A graph G = (V,E) is composed of: V: set of vertices E: set of edges connecting the vertices in V An edge e = (u,v) is a pair of vertices Example: a b V= {a,b,c,d,e} E= {(a,b),(a,c),(a,d), (b,e),(c,d),(c,e), (d,e)} c d e

Applications electronic circuits CS16 electronic circuits networks (roads, flights, communications) LAX JFK DFW STL HNL FTL

Terminology: Adjacent and Incident If (v0, v1) is an edge in an undirected graph, v0 and v1 are adjacent The edge (v0, v1) is incident on vertices v0 and v1 If <v0, v1> is an edge in a directed graph v0 is adjacent to v1, and v1 is adjacent from v0 The edge <v0, v1> is incident on v0 and v1

More Terminologies : A Path in a graph is sequence of vertices connected by edges. The path length is the number of edges on the path  N-1 A cycle in a directed graph is a path that begins and ends at the same vertex and contains at least one edge. DAG is a directed graph having no cycles.

Terminology: Degree of a Vertex The degree of a vertex is the number of edges incident to that vertex For directed graph, the in-degree of a vertex v is the number of edges that have v as the head the out-degree of a vertex v is the number of edges that have v as the tail if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is Why? Since adjacent vertices each count the adjoining edge, it will be counted twice

Examples 3 2 1 2 3 3 3 1 2 3 3 4 5 6 3 G1 1 1 G2 1 1 3 in:1, out: 1 directed graph in-degree out-degree 1 in: 1, out: 2 2 in: 1, out: 0 G3

Terminology : Path path: sequence of vertices v1,v2,. . .vk such that consecutive vertices vi and vi+1 are adjacent. So v1, v2, …,vN are sequence of vertices such that (vi, vi+1) is in E, for 1≤ i <N. 3 2 3 3 3 a b a b c c d e d e a b e d c b e d c

More Terminology simple path: no repeated vertices cycle: simple path, except that the last vertex is the same as the first vertex a b b e c c d e

Even More Terminology connected graph: any two vertices are connected by some path connected not connected subgraph: subset of vertices and edges forming a graph connected component: maximal connected subgraph. E.g., the graph below has 3 connected components.

Subgraphs Examples 1 2 3 G1 1 G3 2 1 2 3 (i) (ii) (iii) (iv) 1 2 1 2 3 1 2 3 G1 (i) (ii) (iii) (iv) Some subgraphs of G1 1 2 1 G3 2 (i) (ii) (iii) (iv) Some subgraphs of G3

More… tree - connected graph without cycles forest - collection of trees

Connectivity Let n = #vertices, and m = #edges A complete graph: one in which all pairs of vertices are adjacent How many total edges in a complete graph? Each of the n vertices is incident to n-1 edges, however, we would have counted each edge twice! Therefore, intuitively, m = n(n -1)/2. Therefore, if a graph is not complete, m < n(n -1)/2

More Connectivity n = #vertices m = #edges For a tree m = n - 1 If m < n - 1, G is not connected

Oriented (Directed) Graph A graph where edges are directed

Directed vs. Undirected Graph An undirected graph is one in which the pair of vertices in a edge is unordered, (v0, v1) = (v1,v0) A directed graph is one in which each edge is a directed pair of vertices, <v0, v1> != <v1,v0> tail head

ADT for Graph objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices functions: for all graph  Graph, v, v1 and v2  Vertices Graph Create()::=return an empty graph Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no incident edge. Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between v1 and v2 Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it are removed Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) is removed Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else return FALSE List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

Graph Representations Adjacency Matrix Adjacency Lists

Adjacency Matrix Let G=(V,E) be a graph with n vertices. The adjacency matrix of G is a two-dimensional n by n array, say adj_mat If the edge (vi, vj) is in E(G), adj_mat[i][j]=1 If there is no such edge in E(G), adj_mat[i][j]=0 The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Examples for Adjacency Matrix 1 2 3 4 5 6 7 1 2 3 1 2 G2 G1 symmetric undirected: n2/2 directed: n2 G4

Merits of Adjacency Matrix From the adjacency matrix, to determine the connection of vertices is easy The degree of a vertex is For a digraph (= directed graph), the row sum is the out_degree, while the column sum is the in_degree

Adjacency Lists (data structures) Each row in adjacency matrix is represented as an adjacency list. #define MAX_VERTICES 50 typedef struct node *node_pointer; typedef struct node { int vertex; struct node *link; }; node_pointer graph[MAX_VERTICES]; int n=0; /* vertices currently in use */

1 2 3 4 5 6 7 1 2 3 1 2 3 1 2 3 1 2 3 4 5 6 7 1 2 2 3 3 1 3 3 1 2 1 2 5 G1 4 6 1 2 1 5 7 2 1 6 G4 G3 2 An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

Some Operations degree of a vertex in an undirected graph # of nodes in adjacency list # of edges in a graph determined in O(n+e) out-degree of a vertex in a directed graph # of nodes in its adjacency list in-degree of a vertex in a directed graph traverse the whole data structure

Graph Traversal Problem: Search for a certain node or traverse all nodes in the graph Depth First Search Once a possible path is found, continue the search until the end of the path Breadth First Search Start several paths at a time, and advance in each one step at a time

Depth-First Search

Exploring a Labyrinth Without Getting Lost A depth-first search (DFS) in an undirected graph G is like wandering in a labyrinth with a string and a can of red paint without getting lost. We start at vertex s, tying the end of our string to the point and painting s “visited”. Next we label s as our current vertex called u. Now we travel along an arbitrary edge (u, v). If edge (u, v) leads us to an already visited vertex v we return to u. If vertex v is unvisited, we unroll our string and move to v, paint v “visited”, set v as our current vertex, and repeat the previous steps.

Depth-First Search Algorithm DFS(v); Input: A vertex v in a graph Output: A labeling of the edges as “discovery” edges and “backedges” for each edge e incident on v do if edge e is unexplored then let w be the other endpoint of e if vertex w is unexplored then label e as a discovery edge recursively call DFS(w) else label e as a backedge

Breadth-First Search Like DFS, a Breadth-First Search (BFS) traverses a connected component of a graph, and in doing so defines a spanning tree with several useful properties. The starting vertex s has level 0, and, as in DFS, defines that point as an “anchor.” In the first round, the string is unrolled the length of one edge, and all of the edges that are only one edge away from the anchor are visited. These edges are placed into level 1 In the second round, all the new edges that can be reached by unrolling the string 2 edges are visited and placed in level 2. This continues until every vertex has been assigned a level. The label of any vertex v corresponds to the length of the shortest path from s to v.

BFS - A Graphical Representation d)

More BFS

BFS Pseudo-Code Algorithm BFS(s): Input: A vertex s in a graph Output: A labeling of the edges as “discovery” edges and “cross edges” initialize container L0 to contain vertex s i  0 while Li is not empty do create container Li+1 to initially be empty for each vertex v in Li do if edge e incident on v do let w be the other endpoint of e if vertex w is unexplored then label e as a discovery edge insert w into Li+1 else label e as a cross edge i  i + 1

Applications: Finding a Path Find path from source vertex s to destination vertex d Use graph search starting at s and terminating as soon as we reach d Need to remember edges traversed Use depth – first search ? Use breath – first search?

DFS vs. BFS DFS Process found destination - done! start DFS Process E G D C destination D Call DFS on D C DFS on C B DFS on B B B Return to call on B A DFS on A A A A found destination - done! Path is implicitly stored in DFS recursion Path is: A, B, D, G G Call DFS on G D B A

DFS vs. BFS BFS Process found destination - done! start E BFS Process G D C destination rear front rear front rear front rear front A B D C D Initial call to BFS on A Add A to queue Dequeue A Add B Dequeue B Add C, D Dequeue C Nothing to add rear front G found destination - done! Path must be stored separately Dequeue D Add G