Everyone grab a small whiteboard and a dry erase marker.

Slides:



Advertisements
Similar presentations
ConcepTest 6.1 To Work or Not to Work
Advertisements

ConcepTest 6.2a Friction and Work I
Module 5, Recitation 3 Concept Problems, Gravitational Potential Energy.
UNIT 4 Work, Energy, and Power. How does the work required to stretch a spring 2 cm compare with the work required to stretch it 1 cm? 1) same amount.
ConcepTest 5.1 To Work or Not to Work
Module 5, Recitation 3 Concept Problems, Gravitational Potential Energy.
ConcepTest 7.2 KE and PE You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen.
ConcepTest 6.5a Kinetic Energy I
ConcepTest Clicker Questions
© 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
ConcepTest 5.1 To Work or Not to Work
ConcepTest Clicker Questions College Physics, 7th Edition
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Gravitational potential energy. Conservation of energy
ConcepTest 6.1 To Work or Not to Work
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
An object is released from rest on a planet that
Work and Energy Conceptual MC
14 1) the same 2) twice as much 3) four times as much 4) half as much 5) you gain no PE in either case Two paths lead to the top of a big hill. One is.
Work, Energy, And Power m Honors Physics Lecture Notes.
Conservation of Energy
1 By what factor does the kinetic energy of a car change when its speed is tripled? 1) no change at all 2) factor of 3 3) factor of 6 4) factor of.
Review for Exam #3 October 26, Is it possible to do work on an object that remains at rest? 1.Yes 2.No.
Physics 151: Lecture 15, Pg 1 Today’s Topics l Potential Energy, Ch. 8-1 l Conservative Forces, Ch. 8-2 l Conservation of mechanical energy Ch.8-4.
Conservative Forces Lecturer: Professor Stephen T. Thornton
Conservation of Energy Lecturer: Professor Stephen T. Thornton
Kinetic Energy Kinetic energy is energy of motion. Kinetic energy is a scalar quantity. KE = ½ mv 2 kinetic energy = ½ mass x (speed) 2 Units for KE are.
Is it possible to do work on an object that remains at rest? 1) yes 2) no ConcepTest 6.1To Work or Not to Work ConcepTest 6.1 To Work or Not to Work.
Work and Kinetic Energy
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
by the normal force acting on a sliding block?
Copyright © 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy.
Is it possible to do work on an object that remains at rest? a) yes b) no ConcepTest 3.1To Work or Not to Work ConcepTest 3.1 To Work or Not to Work.
Chapter 7 Work and Kinetic Energy
Kinetic and Potential Energy. Potential Energy An object can have potential energy by virtue of its surroundings. Familiar examples of potential energy:
Energy m m Physics 2053 Lecture Notes Energy.
You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen different levels for y =
Review and then some…. Work & Energy Conservative, Non-conservative, and non-constant Forces.
Is it possible to do work on an object that remains at rest? 1) yes 2) no ConcepTest 7.1To Work or Not to Work ConcepTest 7.1 To Work or Not to Work.
Copyright © 2010 Pearson Education, Inc. Chapter 8 Potential Energy and Conservation of Energy.
Copyright © 2010 Pearson Education, Inc. ConcepTest Clicker Questions Chapter 7 Physics, 4 th Edition James S. Walker.
Work, Power and Energy. Basic Terms - Work Work (in physics) is defined as a force acting over a distance. W = F x d Scalar Quantity: Units: Making the.
Conservative Forces: The forces is conservative if the work done by it on a particle that moves between two points depends only on these points and not.
Work and Energy.
Reading and Review. A mass attached to a vertical spring causes the spring to stretch and the mass to move downwards. What can you say about the spring’s.
Motion, Forces and Energy Lecture 7: Potential Energy & Conservation The name potential energy implies that the object in question has the capability of.
Is it possible to do work on an object that remains at rest? 1) yes 2) no 1. ConcepTest 6.1To Work or Not to Work 1. ConcepTest 6.1 To Work or Not to Work.
Ch. 6, Work & Energy, Continued. Summary So Far Work-Energy Theorem: W net = (½)m(v 2 ) 2 - (½)m(v 1 ) 2   KE Total work done by ALL forces! Kinetic.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 7 Conservation of Energy Conservative force Non-conservative force potential energy & potential function March 2, 2010.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Section 6-3 Gravitational Potential Energy. Warm-Up #1 A sailboat is moving at a constant velocity. Is work being done by a net external force acting.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
POWER AND EFFICIENCY PLUS SOME REVIEW OF WORK AND ENERGY.
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
Copyright © by Holt, Rinehart and Winston. All rights reserved. Chapter 5 Work and Energy.
Physics: Principles with Applications, 7th edition
Potential Energy and Conservation of Energy
Is it possible for the gravitational potential energy of an object to be negative? 1) yes 2) no.
1 Two paths lead to the top of a big hill. One is steep and direct, while the other is twice as long but less steep. How much more potential energy.
Work Done by a Constant Force
AP PHYSICS B Take home PART WAIT WAIT DON’T TELL ME!!!!!!!!!
Let’s Play! Please listen carefully and think before answering.
ConcepTest Clicker Questions Chapter 8
Physics: Principles with Applications, 7th edition
Forms of mechanical energy
Power and Efficiency Plus some review of work and energy.
Physics: Principles with Applications, 6th edition
Presentation transcript:

Everyone grab a small whiteboard and a dry erase marker.

Is it possible for the gravitational potential energy of an object to be negative? 1) yes 2) no ConcepTest 8.1Sign of the Energy II ConcepTest 8.1 Sign of the Energy II

Is it possible for the gravitational potential energy of an object to be negative? 1) yes 2) no Gravitational PE is mghheight h is measured relative to some arbitrary reference level where PE = 0 ceiling is the zero level book has negative PE on the tabledifferences Gravitational PE is mgh, where height h is measured relative to some arbitrary reference level where PE = 0. For example, a book on a table has positive PE if the zero reference level is chosen to be the floor. However, if the ceiling is the zero level, then the book has negative PE on the table. It is only differences (or changes) in PE that have any physical meaning. ConcepTest 8.1Sign of the Energy II ConcepTest 8.1 Sign of the Energy II

You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen different levels for y = 0 in this problem. Which of the following quantities will you and your friend agree on? 1) only B 2) only C 3) A, B and C 4) only A and C 5) only B and C ConcepTest 8.2KE and PE ConcepTest 8.2 KE and PE A) skier’s PE B) skier’s change in PE C) skier’s final KE

You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen different levels for y = 0 in this problem. Which of the following quantities will you and your friend agree on? 1) only B 2) only C 3) A, B and C 4) only A and C 5) only B and C gravitational PE depends upon the reference level difference  PE does not  PE and  KE should be the same The gravitational PE depends upon the reference level, but the difference  PE does not! The work done by gravity must be the same in the two solutions, so  PE and  KE should be the same. ConcepTest 8.2KE and PE ConcepTest 8.2 KE and PE A) skier’s PE B) skier’s change in PE C) skier’s final KE Follow-up: Does anything change physically by the choice of y = 0?

ConcepTest 8.3Up the Hill ConcepTest 8.3 Up the Hill 1) the same 2) twice as much 3) four times as much 4) half as much 5) you gain no PE in either case Two paths lead to the top of a big hill. One is steep and direct, while the other is twice as long but less steep. How much more potential energy would you gain if you take the longer path?

Since your vertical position (height) changes by the same amount in each case, the gain in potential energy is the same. ConcepTest 8.3Up the Hill ConcepTest 8.3 Up the Hill 1) the same 2) twice as much 3) four times as much 4) half as much 5) you gain no PE in either case Two paths lead to the top of a big hill. One is steep and direct, while the other is twice as long but less steep. How much more potential energy would you gain if you take the longer path? Follow-up: How much more work do you do in taking the steeper path? Follow-up: Which path would you rather take? Why?

How does the work required to stretch a spring 2 cm compare with the work required to stretch it 1 cm? 1) same amount of work 2) twice the work 3) 4 times the work 4) 8 times the work ConcepTest 8.4Elastic Potential Energy ConcepTest 8.4 Elastic Potential Energy

How does the work required to stretch a spring 2 cm compare with the work required to stretch it 1 cm? 1) same amount of work 2) twice the work 3) 4 times the work 4) 8 times the work 1/2 kx 2 elastic PE is 4 times greater work required to stretch the spring is also 4 times greater The elastic potential energy is 1/2 kx 2. So in the second case, the elastic PE is 4 times greater than in the first case. Thus, the work required to stretch the spring is also 4 times greater. ConcepTest 8.4Elastic Potential Energy ConcepTest 8.4 Elastic Potential Energy

A mass attached to a vertical spring causes the spring to stretch and the mass to move downwards. What can you say about the spring’s potential energy (PE s ) and the gravitational potential energy (PE g ) of the mass? 1) both PE s and PE g decrease 2) PE s increases and PE g decreases 3) both PE s and PE g increase 4) PE s decreases and PE g increases 5) PE s increases and PE g is constant ConcepTest 8.5Springs and Gravity ConcepTest 8.5 Springs and Gravity

A mass attached to a vertical spring causes the spring to stretch and the mass to move downwards. What can you say about the spring’s potential energy (PE s ) and the gravitational potential energy (PE g ) of the mass? 1) both PE s and PE g decrease 2) PE s increases and PE g decreases 3) both PE s and PE g increase 4) PE s decreases and PE g increases 5) PE s increases and PE g is constant stretchedelastic PE increases PE s = 1/2 kx 2 lower positiongravitational PE decreases PE g = mgh The spring is stretched, so its elastic PE increases, since PE s = 1/2 kx 2. The mass moves down to a lower position, so its gravitational PE decreases, since PE g = mgh. ConcepTest 8.5Springs and Gravity ConcepTest 8.5 Springs and Gravity

ConcepTest 8.6Down the Hill ConcepTest 8.6 Down the Hill Three balls of equal mass start from rest and roll down different ramps. All ramps have the same height. Which ball has the greater speed at the bottom of its ramp? 1 4) same speed for all balls 2 3

ConcepTest 8.6Down the Hill ConcepTest 8.6 Down the Hill same initial gravitational PE same height same final KEsame speed All of the balls have the same initial gravitational PE, since they are all at the same height (PE = mgh). Thus, when they get to the bottom, they all have the same final KE, and hence the same speed (KE = 1/2 mv 2 ). Three balls of equal mass start from rest and roll down different ramps. All ramps have the same height. Which ball has the greater speed at the bottom of its ramp? 1 4) same speed for all balls 2 3 Follow-up: Which ball takes longer to get down the ramp?

ConcepTest 8.7aRunaway Truck ConcepTest 8.7a Runaway Truck A truck, initially at rest, rolls down a frictionless hill and attains a speed of 20 m/s at the bottom. To achieve a speed of 40 m/s at the bottom, how many times higher must the hill be? 1) half the height 2) the same height 3)  2 times the height 4) twice the height 5) four times the height

ConcepTest 8.7aRunaway Truck ConcepTest 8.7a Runaway Truck A truck, initially at rest, rolls down a frictionless hill and attains a speed of 20 m/s at the bottom. To achieve a speed of 40 m/s at the bottom, how many times higher must the hill be? 1) half the height 2) the same height 3)  2 times the height 4) twice the height 5) four times the height Use energy conservation: E i = PE g = mgH  initial energy: E i = PE g = mgH E f = KE = 1/2 mv 2  final energy: E f = KE = 1/2 mv 2 Conservation of Energy: E i = mgH = E f = 1/2 mv 2 E i = mgH = E f = 1/2 mv 2 gH = 1/2 v 2 therefore: gH = 1/2 v 2 So if v doubles, H quadruples!

x ConcepTest 8.7b ConcepTest 8.7b Runaway Box A box sliding on a frictionless flat surface runs into a fixed spring, which compresses a distance x to stop the box. If the initial speed of the box were doubled, how much would the spring compress in this case? 1) half as much 2) the same amount 3)  2 times as much 4) twice as much 5) four times as much

x ConcepTest 8.7b ConcepTest 8.7b Runaway Box Use energy conservation: E i = KE = 1/2 mv 2 initial energy: E i = KE = 1/2 mv 2 E f = PE s = 1/2 kx 2 final energy: E f = PE s = 1/2 kx 2 Conservation of Energy: Conservation of Energy: E i = 1/2 mv 2 = E f = 1/2 kx 2 E i = 1/2 mv 2 = E f = 1/2 kx 2 mv 2 = kx 2 therefore: mv 2 = kx 2 So if v doubles, x doubles! A box sliding on a frictionless flat surface runs into a fixed spring, which compresses a distance x to stop the box. If the initial speed of the box were doubled, how much would the spring compress in this case? 1) half as much 2) the same amount 3)  2 times as much 4) twice as much 5) four times as much

ConcepTest 8.9 ConcepTest 8.9 Cart on a Hill A cart starting from rest rolls down a hill and at the bottom has a speed of 4 m/s. If the cart were given an initial push, so its initial speed at the top of the hill was 3 m/s, what would be its speed at the bottom? 1) 4 m/s 2) 5 m/s 3) 6 m/s 4) 7 m/s 5) 25 m/s

ConcepTest 8.9 ConcepTest 8.9 Cart on a Hill l When starting from rest, the cart’s PE is changed into KE:  KE1/2 m(4) 2  PE =  KE = 1/2 m(4) 2 A cart starting from rest rolls down a hill and at the bottom has a speed of 4 m/s. If the cart were given an initial push, so its initial speed at the top of the hill was 3 m/s, what would be its speed at the bottom? 1) 4 m/s 2) 5 m/s 3) 6 m/s 4) 7 m/s 5) 25 m/s When starting from 3 m/s, the final KE is: KE f  KE KE f = KE i +  KE 1/2 m(4) 2 = 1/2 m(3) 2 + 1/2 m(4) 2 1/2 m(25) = 1/2 m(25) 1/2 m(5) 2 = 1/2 m(5) 2 Speed is not the same as kinetic energy

You see a leaf falling to the ground with constant speed. When you first notice it, the leaf has initial total energy PE i + KE i. You watch the leaf until just before it hits the ground, at which point it has final total energy PE f + KE f. How do these total energies compare? 1) PE i + KE i > PE f + KE f 2) PE i + KE i = PE f + KE f 3) PE i + KE i < PE f + KE f 4) impossible to tell from the information provided ConcepTest 8.10aFalling Leaves ConcepTest 8.10a Falling Leaves

You see a leaf falling to the ground with constant speed. When you first notice it, the leaf has initial total energy PE i + KE i. You watch the leaf until just before it hits the ground, at which point it has final total energy PE f + KE f. How do these total energies compare? 1) PE i + KE i > PE f + KE f 2) PE i + KE i = PE f + KE f 3) PE i + KE i < PE f + KE f 4) impossible to tell from the information provided air resistance exerts a force on it opposite to its direction of motionforce does negative work leaf loses energy as it falls final total energy is less than its initial total energy As the leaf falls, air resistance exerts a force on it opposite to its direction of motion. This force does negative work, which prevents the leaf from accelerating. This frictional force is a non-conservative force, so the leaf loses energy as it falls, and its final total energy is less than its initial total energy. ConcepTest 8.10aFalling Leaves ConcepTest 8.10a Falling Leaves Follow-up: What happens to leaf’s KE as it falls? What net work is done?

ConcepTest 8.10b ConcepTest 8.10b Falling Balls 1) smaller 2) the same 3) greater You throw a ball straight up into the air. In addition to gravity, the ball feels a force due to air resistance. You throw a ball straight up into the air. In addition to gravity, the ball feels a force due to air resistance. Compared to the time it takes the ball to go up, the time it takes to come back down is:

continuously losing mechanical energyless KE lower speedThis means it will take more time on the way down Due to air friction, the ball is continuously losing mechanical energy. Therefore it has less KE (and consequently a lower speed) on the way down. This means it will take more time on the way down !! ConcepTest 8.10b ConcepTest 8.10b Falling Balls 1) smaller 2) the same 3) greater You throw a ball straight up into the air. In addition to gravity, the ball feels a force due to air resistance. You throw a ball straight up into the air. In addition to gravity, the ball feels a force due to air resistance. Compared to the time it takes the ball to go up, the time it takes to come back down is: Follow-up: How does the force of air resistance compare to gravity when the ball reaches terminal velocity?