SPINTRONICS AND FERROMAGNETIC SEMICONDUCTORS Tomasz Dietl, Warsaw.

Slides:



Advertisements
Similar presentations
Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Advertisements

Phase separation effects in diluted magnetic semiconductors collaborators: T. Andrearczyk, P. Kossacki, J. Jaroszyński, M. Sawicki – Warsaw F. Matsukura,
Topics in Condensed Matter Physics Lecture Course for graduate students CFIF/Dep. Física Spin-dependent transport theory Vitalii Dugaev Winter semester:
Apoio: Esta apresentação pode ser obtida do site seguindo o link em “Seminários, Mini-cursos, etc.” Hole concentration.
Diluted Magnetic Semiconductors Diluted Magnetic Semoconductor (DMS) - A ferromagnetic material that can be made by doping of impurities, especially transition.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
POTENTIAL APPLICATIONS OF SPINTRONICS Dept. of ECECS, Univ.of Cincinnati, Cincinnati, Ohio M.Cahay February 4, 2005.
Spintronics = Spin + Electronics
Spin transport in spin-orbit coupled bands
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Optical spin transfer in GaAs:Mn Joaquin Fernandez-Rossier, Department of Applied Physics, University of Alicante (SPAIN) CECAM June 2003, Lyon (FR) cond-mat/
Jairo Sinova Texas A &M University Support: References: Jungwirth et al Phys. Rev. B 72, (2005) and Jungwirth et al, Theory of ferromagnetic (III,Mn)V.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
School of Physics and Astronomy, University of Nottingham, UK
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.
Theory of ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Tom Foxon, Kevin Edmonds, Andrew.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
2. Magnetic semiconductors: classes of materials, basic properties, central questions  Basics of semiconductor physics  Magnetic semiconductors Concentrated.
Study on the Diluted Magnetic Semiconductors QSRC, Dongguk University
AN INTRODUCTION TO SPINTRONICS
Ferromagnetic Semiconductors Gergely Zaránd Budapest Univ. Technology Collaborators: Greg Fiete (Santa Barbara) Boldizsár Jankó (Notre Dame) Pawel Redlinski.
Spintronics Tomas Jungwirth University of Nottingham Institute of Physics ASCR, Prague.
Institute of Physics ASCR
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
Magic triangle Materials science epitaxy, self organized growth organic synthesis implantation, isotope purification atom and molecule manipulation nanolithography,
Beyond ferromagnetic spintronics: antiferromagnetic I-Mn-V semiconductors Tomas Jungwirth Institute of Physics in Prague & University of Nottingham.
Anisotropic magnetoresistance effects in ferromagnetic semiconductor and metal devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Controlling the Curie temperature in the ferromagnetic semiconductor (Ga,Mn)As through location of Fermi level in the impurity band Margaret Dobrowolska,
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
DMS: Basic theoretical picture
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
Electronic and Magnetic Structure of Transition Metals doped GaN Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee Future Technology Research Division, KIST,
Spin-orbit coupling induced magneto-resistance effects in ferromagnetic semiconductor structures: TAMR, CBAMR, AMR Tomas Jungwirth University of Nottingham.
Dynamics of collective spin excitations in n-doped CdMnTe quantum wells M. Vladimirova, P. Barate, S. Cronenberger, D. Scalbert Groupe d'Etude des Semi-conducteurs,
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
Spintronic transistors: magnetic anisotropy and direct charge depletion concepts Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Ferromagnetic ordering in (Ga,Mn)As related zincblende semiconductors Tomáš Jungwirth Institute of Physics ASCR František Máca, Jan Mašek, Jan Kučera Josef.
Daresbury Laboratory Ferromagnetism of Transition Metal doped TiN S.C. Lee 1,2, K.R. Lee 1, K.H. Lee 1, Z. Szotek 2, W. Temmerman 2 1 Future Technology.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Introduction to Spintronics
전이금속이 포함된 GaN의 전자구조 및 자기적 특성해석
Unbiased Numerical Studies of Realistic Hamiltonians for Diluted Magnetic Semiconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee,
Diluted Magnetic Semiconductors
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Nano and Giga Challenges in Microelectronics, Cracow, 2004 Spin Injection in Semiconductor Nanostructures Alexey Toropov Ioffe Institute, St.Petersburg,
First Principle Design of Diluted Magnetic Semiconductor: Cu doped GaN
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds,
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Extraordinary magnetoresistance in GaMnAs ohmic and Coulomb blockade devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
Ultrafast Dynamic Study of Spin and Magnetization Reversal in (Ga,Mn)As Xinhui Zhang (张新惠) State Key Laboratory for Superlattices and Microstructures.
Dilute moment ferromagnetic semicinductors for spintronics
Tomasz Dietl Laboratory for Cryogenic and Spintronic Research,
S.-C. Lee*, K.-R. Lee, and K.-H. Lee Computational Science Center
Information Storage and Spintronics 18
Presentation transcript:

SPINTRONICS AND FERROMAGNETIC SEMICONDUCTORS Tomasz Dietl, Warsaw

Discontinuous technologies

New information carrier - electron  photon, flux (SQUID loops), vortex (type II superconductors); - spin rather than charge, domain walls,... Discontinuous technologies

New information carrier - electron  photon, flux (SQUID loops), vortex (type II superconductors); - spin rather than charge, domain walls,... New principle of device operation quantum devices, spin transistors,... Discontinuous technologies

New information carrier - electron  photon, flux (SQUID loops), vortex (type II superconductors); - spin rather than charge, domain walls,... New principle of device operation quantum devices, spin transistors,... New architecture - reprogramable devices, SOC - physical, chemical and biological processes - quantum computing Discontinuous technologies

New information carrier - electron  photon, flux (SQUID loops), vortex (type II superconductors); - spin rather than charge, domain walls,... New principle of device operation quantum devices, spin transistors,... New architecture - reprogrammable devices, SOC - physical, chemical and biological processes - quantum computing => Spintronics Discontinuous technologies

Spintronics -- specific goals reading of magnetic information - magnetisation (field) sensors

Spintronics -- specific goals reading of magnetic information - magnetisation (field) sensors TMR

Spintronics -- specific goals reading of magnetic information - magnetisation (field) sensors writing of magnetic information - magnetisation manipulation other than magnetic field TMR

Spintronics -- specific goals reading of magnetic information - magnetisation (field) sensors writing of magnetic information - magnetisation manipulation other than magnetic field generation of spin polarised currents - ferromagnetic metallic electrodes (spin injection) - spin selective ferromagnetic barriers (spin filtering) spin detectors - spin/charge conversion TMR

Spintronics -- specific goals reading of magnetic information - magnetisation (field) sensors writing of magnetic information - magnetisation manipulation other than magnetic field generation of spin polarised currents - ferromagnetic metallic electrodes (spin injection) - spin selective ferromagnetic barriers (spin filtering) spin detectors - spin/charge conversion single spin manipulation - quantum information (low temperatures acceptable) TMR

Spintronics -- materials aspects Why do not combine complementary resources of ferromagnets and semiconductors? TopGaN

Spintronics -- materials aspects Why do not combine complementary resources of ferromagnets and semiconductors?  hybrid semiconductor/ferromagnetic metal structures TopGaN

Spintronics -- materials aspects Why do not combine complementary resources of ferromagnets and semiconductors?  hybrid semiconductor/ferromagnetic metal structures  ferromagnetic semiconductors – multifunctional materials TopGaN

SPINTRONICS AND FERROMAGNETIC SEMICONDUCTORS Tomasz DIETL – Warsaw collaborators: T. Andrearczyk, P. Kossacki, M. Sawicki – Warsaw F. Matsukura, H. Ohno – Sendai J. Cibert, D. Ferrand, S. Tatarenko – Grenoble C.T. Foxon, B.L. Gallagher, K. Edmonds, K.Y. Wang – Nottingham T. Jungwirth (Prague) J. Koenig, A.H. MacDonald, J. Sinova – Texas reviews: Semicond. Sci. Technol. 17 (2002) ; MRS Bulletin, October 2003, p. 714, Europhys. News 34 (2003) 216. support: FENIKS, AMORE -- EC projects, Polonium Project Ohno Semiconductor Spintronics ERATO Project of JST Humboldt Foundation

OUTLINE 1.Frromagnetic semiconductors – background 2.Understanding of carrier-controlled ferromagnetic semiconductors 3. Magnetisation manipulation 4. Have we a functional room temperature ferromagnetic semiconductor?

magnetic semiconductors short-range ferromagnetic super- or double exchange EuS, ZnCr 2 Se 4, La 1-x Sr x MnO 3,... Ferromagnetic semiconductors

magnetic semiconductors short-range ferromagnetic super- or double exchange EuS, ZnCr 2 Se 4, La 1-x Sr x MnO 3,... EuS/KCl,... diluted magnetic semiconductors long-range hole-mediated ferromagnetic exchange IV-VI: p-Pb 1-x-y Mn x Sn y Te Story et al. (Warsaw, MIT) PRL’86 III-V: In 1-x- Mn x As Ohno et al. (IBM) PRL’92 Ga 1-x- Mn x As Ohno et al. (Tohoku) APL’96 T C  100 K for x = 0.05 II-VI: Cd 1-x Mn x Te/Cd 1-x-y Zn x Mg y Te:N QW Haury et al. (Grenoble, Warsaw) PRL’97 Zn 1-x Mn x Te:N,P Ferrand et al. (Grenoble, Warsaw) PRB’01 Ferromagnetic semiconductors

magnetic semiconductors short-range ferromagnetic super- or double exchange EuS, ZnCr 2 Se 4, La 1-x Sr x MnO 3,... EuS/KCl,... diluted magnetic semiconductors long-range hole-mediated ferromagnetic exchange IV-VI: p-Pb 1-x-y Mn x Sn y Te Story et al. (Warsaw, MIT) PRL’86 III-V: In 1-x- Mn x As Ohno et al. (IBM) PRL’92 Ga 1-x- Mn x As Ohno et al. (Tohoku) APL’96 T C  100 K for x = 0.05 II-VI: Cd 1-x Mn x Te/Cd 1-x-y Zn x Mg y Te:N QW Haury et al. (Grenoble, Warsaw) PRL’97 Zn 1-x Mn x Te:N,P Ferrand et al. (Grenoble, Warsaw) PRB’01 III-V and II-VI DMS: quantum nanostructures and ferromagnetism combine Ferromagnetic semiconductors

Zener/RKKY model of carrier-controlled ferromagnetism in DMS

Mn state and its coupling to carriers in DMS Mn: 3d 5 4s 2 II-VI: Mn electrically neutral (3d 5, S = 5/2) –doping by acceptors necessary III-V, IV: Mn acts as source of spins and holes sp-d exchange interaction => -- large p-d hybridisation and intra-site Hubbard U => Kondo hamiltonian H = -  N o Ss => strong Mn hole p-d exchange -- (Cd,Mn)Te:  N o  eV Gaj et al. (Warsaw, Paris) SSC’79 -- (Ga,Mn)As:  N o  eV Okabayashi et al. (Tokyo) PRB’98, Szczytko et al. (Warsaw)PRB’01 -- no s-d hybridisation => weaker Mn electron s-d exchange  N o  0.2 eV Gaj et al. (Warsaw, Paris) SSC’79 giant spin splitting of bands proportional to Mn magnetization

Zener/RKKY model of hole-controlled ferromagnetism in DMS Driving force: lowering of the hole energy due to redistribution between hole spin subbands split by p-d exchange interaction T.D. et al.,’97- MacDonald et al. (Austin) ’99- k EFEF

Zener/RKKY model of hole-controlled ferromagnetism in DMS Driving force: lowering of the hole energy due to redistribution between hole spin subbands split by p-d exchange interaction T.D. et al.,’97- MacDonald et al. (Austin) ’99- k EFEF No adjustable parameters T C ~  2  (s) DOS Essential ingredient: Complexity of the valence band structure has to be taken into account

Mn-based p-type DMS to which p-d Zener model has been found to apply Theory: T. D et al. (Warsaw, Tohoku, Grenoble) Science’00, PRB’01 Jungwirth et al. (Austin, Prague, PRB’02), also UCSD, NRL, … Expl.: Tohoku, Kanagawa, Tokyo, Grenoble, PSU, NRL, Notre Dame, UCSB, Nottingham, … x Mn = 5% p = 3.5x10 20 cm -3 T C   CW T C (p,x) consistent with p-d Zener model

Indication of ferromagnetism in n-Zn 1-x Mn x O:Al Temperature (K)  (mT) T C  160 mK consistent with s-d Zener model   R xx (  ) Magnetic field (T) 50mK 60mK 75mK 100mK 125mK 150mK 200mK Andrearczyk et al. (Warsaw, Yokohama) ICPS’00 n = 1.4x10 20 cm -3 x = 0.03

p-d Zener model for p-type DMS the model explains/predicted: -- T C (x, p, n), spin polarization, M(T,H), -- magnetic stiffness (domain width, spin wave spectrum) -- anomalous Hall effect -- magnetoresistance (WLR) and anisotropic magnetoresistance -- a.c. conductivity and magnetic circular dichroism -- … T.D. et al.,’97- A.H. MacDonald et al. ’99-

Spintronic functionalities of ferromagnetic DMS

Spintronic functionalities of ferro DMS As metal ferromagnets: spin injectors GMR, TMR, AMR, PHE Kerr effect current-induced magnetisation switching

Spintronic functionalities of ferro DMS Magnetisation manipulation unique to magnetic semiconductor: electric field light epitaxial strain

Electric field

Tuning of magnetic ordering by electric field (ferro-FET) (In,Mn)As Ohno et al. (Tohoku, Warsaw) Nature ‘00 M I VHVH

Tuning magnetic ordering by electric field (ferro-FET) (In,Mn)As Ohno et al. (Tohoku, Warsaw) Nature ‘00 M I VHVH

V QW barriers p doped n doped undoped Hole-induced ferromagnetism in a pin diode – ferro-LED (Cd,Mn)Te Hole liquidDepleted EvEv EcEc EFEF V Boukari et al. (Grenoble, Warsaw) PRL’02 Photoluminescence

Light

Effect of illumination in (Cd,Mn)Te p-i-n diode V QW illumination EvEv EcEc EFEF Boukari et al. (Grenoble, Warsaw) PRL’02 0 V 1.5 K Enhancement of ferromagnetism n+n+ p+p+

Effect of illumination in (Cd,Mn)Te p-i-p diode V QW illumination Boukari et al. (Grenoble, Warsaw) PRL’02 Destruction of ferromagnetism p+p+ p+p+ EFEvEFEv EcEc Temperature Hole concentration p = constT = const

Epitaxial strain

Magnetic anisotropy -- epitaxial strain engineering Tensile strain e.g. (Ga,Mn)As/(In,Ga)As Compressive strain e.g. (Ga,Mn)As/GaAs

Epitaxial-strain-induced magnetic anisotropy Sawicki et al.’(Warsaw, Wuerzburg)’04 after T.D. et al. (Warsaw, Tohoku) PRB ‘01 Ga 1-x Mn x As/GaAs  compressive strain j z =  3/2 x = 0.053

Epitaxial-strain-induced magnetic anisotropy Sawicki et al. (Warsaw, Wuerzburg)’04 after T.D. et al. (Warsaw, Tohoku) PRB ‘01 Ga 1-x Mn x As/GaAs  compressive strain j z =  3/2 j z =  1/2 theory x = 0.053

Reorientation transition – theory and expt. annealing Sawicki et al. (Warsaw, Wuerzburg)’04 after T.D. et al. (Warsaw, Tohoku) PRB ‘01 Ga 1-x Mn x As/GaAs  compressive strain j z =  3/2 j z =  1/2 theory x = 0.053

Controlling locally magnetisation direction to be demonstrated Ferromagnetic quantum dot array M M s /4

Can we push T C higher?

Strategies Two strategies for pushing T C higher -- increasing p and/or x in existing ferromagnetic DMS -- searching for DMS with greater coupling constant  2  (E F ) T.D. et al. (Warsaw, Tohoku, Grenoble) Science’00

Strategies Two strategies for pushing T C higher -- increasing p and/or x in existing ferromagnetic DMS -- searching for DMS with greater coupling constant  2  (E F ) Obstacles -- self-compensation -- solubility limits -- tight binding of holes by TM ions (Zhang-Rice polaron) T.D. et al. (Warsaw, Tohoku, Grenoble) Science’00

1/  Where are we? Wang/ Sawicki (Nottingham, Warsaw) remanent magnetisation and 1/  vs. T hysteresis loops M REM T C = 173 K T C   CW

Record Curie temperature (K) T C in (III,Mn)As The progress due to increase of p by low temperature annealing  out diffusion of Mn I : Wojtowicz et al. (Notre Dame, Warsaw, Berkeley) PRB’02; APL’04 Edmonds et al. (Nottingham, Warsaw) PRL’04 IBM, Tohoku, Tokyo, Notre Dame, PSU, Tohoku, Nottingham, …

(Ga,Mn)As – growth phase diagram phase separation GaAs + MnAs LT Ga 1-x Mn x As:Mn I roughening polycrystal after Matsukura and Ohno

SUMMARY Mn-based arsenides, also antymonides, tellurides -- basic thermodynamic, magnetoelastic, optical, and also optical properties understood (p-d Zener model)

SUMMARY Mn-based arsenides, also antymonides, tellurides -- basic thermodynamic, magnetoelastic, optical, and also optical properties understood (p-d Zener model) -- magnetisation manipulations by electric field, light, and epitaxial strain demonstrated

SUMMARY Mn-based arsenides, also antymonides, tellurides -- basic thermodynamic, magnetoelastic, optical, and also optical properties understood (p-d Zener model) -- magnetisation manipulations by electric field, light, and epitaxial strain demonstrated -- role of point defects (interstitials) and also extended defects (e.g., MnAs precipitates) elucidated

OTHER SYSTEMS

Zener model prediction of T C for semiconductors containing 5% Mn d 5, p = 3.5  cm -3 T. D. et al. (Warsaw, Tohoku, Grenoble) Science’00, PRB’01 Light elements: strong p-d hybridisation weak spin-orbit interaction

Materials showing hysteresis and spontaneous magnetization at 300 K wz-c- (Ga,Mn)N, (In,Mn)N, (Ga,Cr)N, (Al,Cr)N, (Ga,Gd)N, (Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb, (Ga,Mn)P:C (Zn,Mn)O, (Zn,Ni)O, (Zn,Co)O, (Zn,V)O, (Zn,Fe,Cu)O (Zn,Cr)Te (Ti,Co)O 2, (Sn,Co)O 2, (Sn,Fe)O 2, (Hf,Co)O 2 (Cd,Ge,Mn)P 2, (Zn,Ge,Mn)P 2, (Zn,Sn,Mn)As 2 (Ge,Mn) (La,Ca)B 6, C 60, C, …

Materials showing hysteresis and spontaneous magnetization at 300 K wz-c- (Ga,Mn)N, (In,Mn)N, (Ga,Cr)N, (Al,Cr)N, (Ga,Gd)N, (Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb, (Ga,Mn)P:C (Zn,Mn)O, (Zn,Ni)O, (Zn,Co)O, (Zn,V)O, (Zn,Fe,Cu)O (Zn,Cr)Te (Ti,Co)O 2, (Sn,Co)O 2, (Sn,Fe)O 2, (Hf,Co)O 2 (Cd,Ge,Mn)P 2, (Zn,Ge,Mn)P 2, (Zn,Sn,Mn)As 2 (Ge,Mn) (La,Ca)B 6, C 60, C, … In many cases high T C consistent with ab initio computations within DFT

Materials showing hysteresis and spontaneous magnetization at 300 K wz-c- (Ga,Mn)N, (In,Mn)N, (Ga,Cr)N, (Al,Cr)N, (Ga,Gd)N, (Ga,Mn)As, (In,Mn)As, (Ga,Mn)Sb, (Ga,Mn)P:C (Zn,Mn)O, (Zn,Ni)O, (Zn,Co)O, (Zn,V)O, (Zn,Fe,Cu)O (Zn,Cr)Te (Ti,Co)O 2, (Sn,Co)O 2, (Sn,Fe)O 2, (Hf,Co)O 2 (Cd,Ge,Mn)P 2, (Zn,Ge,Mn)P 2, (Zn,Sn,Mn)As 2 (Ge,Mn) (La,Ca)B 6, C 60, C, … In many cases high T C consistent with ab initio computations within DFT  None proven to be 300 K ferromagnetic semiconductor  Phase diagrams unknown  Each system brings new challenges

CONCLUSIONS  ( Ga,Mn)As, p-(Cd,Mn)Te, … emerges as the best understood ferromagnet  Beginning of the road for magnetically doped nitrides and oxides

END

Energy levels of transition metal impurities in II-VI compounds and III-V compounds d n /d n+1 d n /d n-1 d n /d n+1 Mn neutral Mn acceptor Zunger, Baranowski, Vogel, Langer, Fujimori,...