Remember that stellar distances can be measured using parallax:

Slides:



Advertisements
Similar presentations
Chapter 11: Characterizing Stars
Advertisements

7B Stars … how I wonder what you are.. 7B Goals Tie together some topics from earlier in the semester to learn about stars: How do we know how far away.
1. absolute brightness - the brightness a star would have if it were 10 parsecs from Earth.
Chapter 11 Surveying the Stars. I.Parallax and distance. II.Luminosity and brightness Apparent Brightness (ignore “magnitude system” in book) Absolute.
Stars Stars are very far away.
Chapter 14 Surveying the Stars. Luminosity and Apparent Brightness.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 10 Measuring the Stars.
The Stars: A Celestial Census
… how I wonder what you are.
8 Stars … how I wonder what you are.. 8 Goals Stars are Suns. Are they: –Near? Far? –Brighter? Dimmer? –Hotter? Cooler? –Heavier? Lighter? –Larger? Smaller?
Chapter 11 Surveying the Stars Properties of Stars First let see how we measure three of the most fundamental properties of stars: 1.Luminosity.
Ch. 8 – Characterizing Stars part 3: The Hertzsprung-Russell Diagram Luminosity Classes Spectral Types.
Properties of Stars How do we measure stellar luminosities?
Properties of Stars. Distance Luminosity (intrinsic brightness) Temperature (at the surface) Radius Mass.
Astro 10-Lecture 9: Properties of Stars How do we figure out the properties of stars? We’ve already discussed the tools: Light Gravity (virtually impossible.
Surveying the Stars.
Chapter 12: Surveying the Stars
Chapter 11 Surveying the Stars Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?
The Nature of the Stars Chapter 19. Parallax.
Copyright © 2010 Pearson Education, Inc. Chapter 10 Measuring the Stars.
Telescopes (continued). Basic Properties of Stars.
Chapter 11 Surveying The Stars Surveying The Stars.
Chapter 13: Taking the Measure of Stars Stars come in a wide range of temperatures, sizes, masses and colors. The constellation of Orion is a good example.
How Do Astronomers Measure the Brightness of a Star?  Stars vary greatly in brightness  Early peoples observed bright stars and grouped them into constellations.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Surveying the Stars Insert TCP 5e Chapter 15 Opener.
Stellar Properties from Red Giants to White Dwarfs.
Chapter 16 The Nature of Stars Astro1010-lee.com UVU Survey of Astronomy.
Chapter 10 Measuring the Stars. Units of Chapter 10 The Solar Neighborhood Luminosity and Apparent Brightness Stellar Temperatures Stellar Sizes The Hertzsprung-Russell.
Chapter 17 Measuring the Stars. 17.1The Solar Neighborhood 17.2Luminosity and Apparent Brightness 17.3Stellar Temperatures More on the Magnitude Scale.
Properties of Stars.
Chapter 11 Surveying the Stars Properties of Stars Our Goals for Learning How luminous are stars? How hot are stars? How massive are stars?
Physical properties. Review Question What are the three ways we have of determining a stars temperature?
1 Stars Stars are very far away. The nearest star is over 270,000 AU away! ( Pluto is 39 AU from the Sun ) That is equal to 25 trillion miles! At this.
All stars form in clouds of dust and gas. Balance of pressure: outward from core and inward from gravity.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 17.
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2.
Chapter 11: Chapter 11: Characterizing Stars. How near is the closest star other than the Sun? How near is the closest star other than the Sun? Is the.
Copyright © 2010 Pearson Education, Inc. Chapter 10 Measuring the Stars.
Solid Molecules Neutral Gas Ionized Gas (Plasma) Level of ionization also reveals a star’s temperature 10 K 10 2 K 10 3 K 10 4 K 10 5 K 10 6 K.
Ch. 28 The Stars Properties of Stars ???
Objectives Determine how distances between stars are measured. Distinguish between brightness and luminosity. Identify the properties used to classify.
© 2010 Pearson Education, Inc. Chapter 15 Surveying the Stars.
Chapter 10 Measuring the Stars. Units of Chapter 10 The Solar Neighborhood Luminosity and Apparent Brightness Stellar Temperatures Stellar Sizes The Hertzsprung–Russell.
Chapter 10 Measuring the Stars. Star Cluster NGC ,000 light-years away.
How Do Astronomers Measure the Brightness of a Star? Stars vary greatly in brightness Stars vary greatly in brightness Early peoples observed bright stars.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Measuring the Stars.
Investigating Astronomy
© 2011 Pearson Education, Inc. Chapter 17 Measuring the Stars.
Chapter 11: Characterizing Stars
Measuring the Stars What properties of stars might you want to determine?
ASTR 113 – 003 Spring 2006 Lecture 03 Feb. 08, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-39) Introduction To Modern Astronomy.
Chapter 11: Chapter 11: Characterizing Stars. How near is the closest star other than the Sun? How near is the closest star other than the Sun? Is the.
Chapter 11 Surveying the Stars. How do we measure stellar luminosities?
Universe Tenth Edition Chapter 17 The Nature of the Stars Roger Freedman Robert Geller William Kaufmann III.
Properties of Stars. "There are countless suns and countless earths all rotating around their suns in exactly the same way as the seven planets of our.
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2 Chapter 10 Measuring the Stars.
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2.
Measuring the Stars How big are stars? How far away are they? How bright are they? How hot? How old, and how long do they live? What is their chemical.
Discovering the Universe Eighth Edition Discovering the Universe Eighth Edition Neil F. Comins William J. Kaufmann III CHAPTER 11 Characterizing Stars.
© 2017 Pearson Education, Inc.
Announcements Quiz 6 due Monday – this covers stars, Chapter 10
© 2017 Pearson Education, Inc.
Chapter 17 Measuring the Stars
Chapter 10 Measuring the Stars
Chapter 17 Measuring the Stars
A Beginner’s Guide to the Universe
Chapter 17 Measuring the Stars
Stellar Properties from Red Giants to White Dwarfs
Chapter 17.
Presentation transcript:

Remember that stellar distances can be measured using parallax:

Distance = 1/arcsec Distance in Parsecs 1 Parsec = 1 arcsec or (31×10 12 ) kilometers (about 19 trillion miles), AU, or about 3.26 light-years

Nearest star to the Sun Proxima Centauri - member of the three-star system Sun is a marble, Earth is a grain of sand orbiting 1 m away Solar system extends about 50 m from Sun; rest of distance to nearest star is basically empty Nearest star is another marble 270 km away

The 30 closest stars to the Sun:

Next nearest neighbor: Barnard’s Star Barnard’s Star has the largest proper motion of any star—proper motion is the actual shift of the star in the sky, after correcting for parallax These pictures were taken 22 years apart:

Naming stars: Brightest stars were known to, and named by, the ancients (Procyon) In 1604, stars within a constellation were ranked in order of brightness and labeled with Greek letters (Alpha Centauri) In the early 18th century, stars were numbered from west to east in a constellation (61 Cygni)

As more and more stars were discovered, different naming schemes were developed (G51-15, Lacaille 8760, S 2398) Now, new stars are simply labeled by their celestial coordinates

Apparent luminosity is measured using a magnitude scale, which is related to our perception. It is a logarithmic scale; a change of 5 in magnitude corresponds to a change of a factor of 100 in apparent brightness. It is also inverted—larger magnitudes are dimmer.

The color of a star is indicative of its temperature. Red stars are relatively cool, while blue ones are hotter.

The radiation from stars is blackbody radiation; as the blackbody curve is not symmetric, observations at two wavelengths are enough to define the temperature.

Stellar spectra are much more informative than the blackbody curves. There are seven general categories of stellar spectra, corresponding to different temperatures. From highest to lowest, those categories are: O B A F G K M Oh Be A Fine Girl/Guy Kiss Me

Here are their spectra:

Characteristics of the spectral classifications:

Converting from magnitude to luminosity in solar units: A reduction of 5 in magnitude corresponds to an increase in a factor of 100 in luminosity

For the vast majority of stars that cannot be imaged directly, size must be calculated knowing the luminosity and temperature: Giant stars have radii between 10 and 100 times the Sun’s Dwarf stars have radii equal to, or less than, the Sun’s Supergiant stars have radii more than 100 times the Sun’s

Stellar radii vary widely:

The H-R diagram plots stellar luminosity against surface temperature. H-R diagram of a few prominent stars:

Once many stars are plotted on an H-R diagram, a pattern begins to form: These are the 80 closest stars to us; note the dashed lines of constant radius. The darkened curve is called the main sequence, as this is where most stars are. Also indicated is the white dwarf region; these stars are hot but not very luminous, as they are quite small.

An H-R diagram of the 100 brightest stars looks quite different: These stars are all more luminous than the Sun. Two new categories appear here—the red giants and the blue giants. Clearly, the brightest stars in the sky appear bright because of their enormous luminosities, not their proximity.

This is an H-R plot of about 20,000 stars. The main sequence is clear, as is the red giant region. About 90% of stars lie on the main sequence; 9% are red giants and 1% are white dwarfs.

Spectroscopic parallax: Has nothing to do with parallax, but does use spectroscopy in finding the distance to a star. 1. Measure the star’s apparent magnitude and spectral class 2. Use spectral class to estimate luminosity 3. Apply inverse-square law to find distance

Spectroscopic parallax can extend the cosmic distance scale to several thousand parsecs:

The spectroscopic parallax calculation can be misleading if the star is not on the main sequence. The width of spectral lines can be used to define luminosity classes:

In this way, giants and supergiants can be distinguished from main-sequence stars

Determination of stellar masses: Many stars are in binary pairs; measurement of their orbital motion allows determination of the masses of the stars. Visual binaries can be measured directly. This is Kruger 60:

Spectroscopic binaries can be measured using their Doppler shifts:

Eclipsing binaries can be measured using the changes in luminosity.

Mass is the main determinant of where a star will be on the Main Sequence.

To measure stellar masses in a binary star, the period and semi-major axis of the orbit must be measured. Kepler’s third law gives the sum of the masses of the two stars. Relative speeds of the two stars can be measured using the Doppler effect Speed will be inversely proportional to the mass. This allows us to calculate the mass of each star.

This pie chart shows the distribution of stellar masses. The more massive stars are much rarer than the least massive.

Mass is correlated with radius and is very strongly correlated with luminosity:

Mass is also related to stellar lifetime: Using the mass–luminosity relationship:

So the most massive stars have the shortest lifetimes—they have a lot of fuel but burn it at a very rapid pace. On the other hand, small red dwarfs burn their fuel extremely slowly and can have lifetimes of a trillion years or more.