Performance Evaluation of the IEEE 802.16 MAC for QoS Claudio Cicconetti, Alessandro Erta, Luciano Lenzini, and Enzo Mingozzi IEEE Transactions On Mobile.

Slides:



Advertisements
Similar presentations
A Centralized Scheduling Algorithm based on Multi-path Routing in WiMax Mesh Network Yang Cao, Zhimin Liu and Yi Yang International Conference on Wireless.
Advertisements

Multimedia Communications QoS Support for Multimedia in IEEE Networks A Survey of Scheduling Techniques Aadil Zia Khan Department of Computer Science.
WMAN, part 2 S Wireless Personal, Local, Metropolitan, and Wide Area Networks1 Contents IEEE family of standards Protocol layering TDD frame.
Performance Evaluation of the IEEE MAC for QoS Support Aemen Hassaan Lodhi Multimedia Communications Project (Spring )
1 Advisor: Dr. Kai-Wei Ke Speaker: Ming-Chia Hsieh Date: 30/07/2006 A Dynamic Uplink/Downlink BWA and Packet Scheduling Mechanism in WiMAX.
A serve flow management strategy for IEEE BWA system in TDD mode Hsin-Hsien Liu
Performance Evaluation of the IEEE MAC for QoS Support Aemen Hassaan Lodhi
1 Token Bucket Based CAC and Packet Scheduling for IEEE Broadband Wireless Access Networks Chi-Hung Chiang
Performance Analysis of the IEEE Wireless Metropolitan Area Network nmgmt.cs.nchu.edu.tw 系統暨網路管理實驗室 Systems & Network Management Lab Reporter :黃文帥.
Quality of Service Scheduling for Broadband Wireless Access Systems Sih-Han Chen Department of Computer Science and Information Engineering National.
1 在 IEEE 系統上提供 QoS 機 制之研究 Student:Hsin-Hsien Liu Advisor:Ho-Ting Wu Date:
The uplink subframe may also contain contention-based allocations for - initial system access and - broadcast or multicast bandwidth requests. The access.
1 A new QoS Architecture for IEEE and Spec. Instruction Speaker: Ming-Chia Hsieh Date:2005/05/03.
12006/11/28 Performance Analysis of Scheduling Algorithms for VoIP Services in IEEE e Systems Advisor: Dr. Kai-Wei Ke Speaker: Jaw-Woei Ma Date:11/28/2006.
An Integrated WiMAX/WiFi Architecture with QoS Consistency over Broadband Wireless Networks 報告者 : 李宗穎 IEEE Consumer Communications and Networking Conference.
WiMAX 簡介 Ming-Tsung Huang Fu Jen Catholic University Computer Science.
The QoS of WiMAX. Outline Introduction Connections & Service flows Classifier & Scheduler Scheduling services Handover.
1 IEEE Wireless MAN "Air Interface for Fixed Broadband Wireless Access Systems"
An Efficient QoS Scheduling Architecture for IEEE Wireless MANs Supriya Maheshwari Under the guidance of Prof. Sridhar Iyer and Prof. Krishna Paul.
A Hierarchical Model for Bandwidth Management and Admission Control in Integrated IEEE & Wireless Networks Dusit Niyato and Ekram Hossain IEEE.
A Study of the Bandwidth Management Architecture over IEEE WiMAX Student :Sih-Han Chen Advisor : Ho-Ting Wu Date :
IEEE WirelessMAN For Broadband Wireless Metropolitan Area Networks.
Chia-Yu Yu 1, Sherali Zeadally 2, Naveen Chilamkurti 3, Ce-Kuen Shieh 1 1 Institute of Computer Communication Engineering and Department of Electrical.
A Flexible Resource Allocation and Scheduling Framework for Non-real-time Polling Service in IEEE Networks Fen Hou, James She, Pin-Han Ho, and Xuemin.
Scheduling in IEEE e Mobile WiMAX Networks-Key Issues and a Survey 報告者 : 李宗穎 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 2, FEBRUARY.
WiMAX: IEEE Wireless MANs. Sridhar IyerIIT Bombay2 Wireless networks  Wireless PANs (Bluetooth – IEEE ) –very low range –wireless connection.
Performance Analysis of an innovative scheduling algorithm for OFDMA based IEEE a systems E. Baccarelli, M.Biagi, C.Pelizzoni, N.Cordeschi This work.
2008/4/101 A DAPTIVE P OWER A LLOCATION AND C ALL A DMISSION C ONTROL IN M ULTISERVICE W IMAX A CCESS N ETWORKS IEEE Wireless Communications February 2007.
An Adaptive Deficit-based Scheduler for IEEE e Networks Nararat RUANGCHAIJATUPON and Yusheng JI The Graduate University for Advanced Studies National.
Fen Hou and Pin-Han Ho Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario Wireless Communications and Mobile.
WiMAX: IEEE Wireless MANs Sridhar Iyer K R School of Information Technology IIT Bombay
November 4, 2003APOC 2003 Wuhan, China 1/14 Demand Based Bandwidth Assignment MAC Protocol for Wireless LANs Presented by Ruibiao Qiu Department of Computer.
Chun Nie, Thanasis Korakis, and Shivendra Panwar Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn A Multi-hop Polling.
Quality of Service Support in IEEE Networks Claudio Cicconetti, Luciano Lenzini, and Enzo Mingozzi, University of PisaCarl Eklund, Nokia Research.
Energy-Saving Scheduling in IEEE e Networks Chia-Yen Lin, and Hsi-Lu Chao Department of Computer Science National Chiao Tung University.
Integration of WiMAX and WiFi Optimal Pricing for Bandwidth Sharing Dusit Niyato and Ekram Hossain, TRLabs and University of Manitoba IEEE Communications.
Robust QoS Control for Single Carrier PMP Mode IEEE Systems Authors: Xiaofeng Bai, Abdallah Shami, and Yinghua Ye Published: IEEE TMC April 2008.
Quality of Service in WiMAX and LTE Networks Mehdi Alasti and Behnam Neekzad, Clearwire Jie Hui and Rath Vannithamby, Intel Labs IEEE Communications Magazine.
Downlink Scheduling With Economic Considerations to Future Wireless Networks Bader Al-Manthari, Nidal Nasser, and Hossam Hassanein IEEE Transactions on.
A Downlink Data Region Allocation Algorithm for IEEE e OFDMA
Uplink Scheduling with Quality of Service in IEEE Networks Juliana Freitag and Nelson L. S. da Fonseca State University of Campinas, Sao Paulo,
Channel Access Delay Analysis of IEEE Best Effort Services Hossein Ghaffarian, Mahmood Fathy, Mohsen Soryani Dept. of Computer Engineering Iran.
A Multicast Mechanism in WiMax Mesh Network Jianfeng Chen, Wenhua Jiao, Pin Jiang, Qian Guo Asia-Pacific Conference on Communications, (APCC '06)
Opportunistic Fair Scheduling for the Downlink of Wireless Metropolitan Area Networks Mehri Mehrjoo, Mehrdad Dianati, Xuemin (Sherman) Shen, and.
Broadband Mobile Wireless Network Lab Quality of Service Scheduling for Broadband Wireless Access Systems Vehicular Technology Conference, 2006.
Yuan-Cheng Lai and Yen-Hung Chen Department of Information Management National Taiwan University of Science and Technology AINA 2008 Accept rate: 2008.
Applying a Self-Configuring Admission Control Algorithm in a New QoS Architecture for IEEE Networks Sahar Ghazal 1, Yassine Hadjadj Aout 2, Jalel.
HR/AB/VS, IIT-Bombay 1 Feb 8, 2006 An Opportunistic DRR (O-DRR) Uplink Scheduling Scheme for IEEE based Broadband Wireless Networks Hemant Kr Rath,
Quality of Service Schemes for IEEE Wireless LANs-An Evaluation 主講人 : 黃政偉.
1 A Cross-Layer Scheduling Algorithm With QoS Support in Wireless Networks Qingwen Liu, Student Member, IEEE, Xin Wang, Member, IEEE, and Georgios B. Giannakis,
Eun-Chan Park and Hwangnam Kim Dept. of Information and Communication, Dongguk University ( 南韓東國大學 ) Dept. of Electrical Engineering, Korea University.
A Bandwidth Scheduling Algorithm Based on Minimum Interference Traffic in Mesh Mode Xu-Yajing, Li-ZhiTao, Zhong-XiuFang and Xu-HuiMin International Conference.
Fair and Efficient multihop Scheduling Algorithm for IEEE BWA Systems Daehyon Kim and Aura Ganz International Conference on Broadband Networks 2005.
WCNC 2008 Markov Chain Model for Polling Delay and Throughput Analyses of Uplink Subframe in WiMAX Networks Ben-Jye Chang Department of Computer Science.
©Copyright All Rights Reserved Scheduling in WiMAX Hemant Kumar Rath Dept. of Electrical Engg., IIT-Bombay Guide: Prof.
Multicast Polling and Efficient VoIP Connections in IEEE Networks Olli Alanen Telecommunication Laboratory Department of Mathematical Information.
Downlink Scheduling for Multimedia Multicast/Broadcast over Mobile WiMAX Connection-oriented Multi- state Adaptation Source:IEEE Wireless Communications.
Courtesy Piggybacking: Supporting Differentiated Services in Multihop Mobile Ad Hoc Networks Wei LiuXiang Chen Yuguang Fang WING Dept. of ECE University.
Ben-Gurion University of the Negev Department of Communication Systems Engineering.
A Method for Non-real-time Polling Service in IEEE Wireless Access Networks + Jing Wu, + Jeonghoon Mo, and * Ting Wang + Information and Communications.
New Distributed QoS Control Scheme for IEEE Wireless Access Networks Xiaofeng Bai 1, Abdallah Shami 1, Khalim Amjad Meerja 1 and Chadi Assi 2 1.
OPTIMAL LINEAR-TIME QOS- BASED SCHEDULING FOR WIMAX Arezou Mohammadi, Selim G. Akl, Firouz Behnamfar School of Computing, Queen’s University CCECE 2008.
Page 1 End-to-End Bandwidth Reservation in IEEE Mesh Networks Claudio Cicconetti, Vanessa Gardellin, Luciano Lenzini, Enzo Mingozzi IEEE International.
Broadband Access Networks and Services Chapter 7 IEEE Standard Byeong Gi Lee Seoul National University EE Spring 2004.
CSIE & NC Chaoyang University of Technology Taichung, Taiwan, ROC
Analysis and Evaluation of a New MAC Protocol
Dusit Niyato, Student Member, IEEE Ekram Hossain, Senior Member, IEEE
WiMAX: IEEE Wireless MANs
A Study of the Bandwidth Management Architecture over IEEE 802
Presentation transcript:

Performance Evaluation of the IEEE MAC for QoS Claudio Cicconetti, Alessandro Erta, Luciano Lenzini, and Enzo Mingozzi IEEE Transactions On Mobile Computing, VOL. 6, NO. 1, JAN 報告者:李宗穎

Outline  Background  Simulation Environment  Performance Evaluation  Conclusions

Introduction  This paper focus following Frame-based point-to-multipoint mode The BS in a Time Division Multiple Access Full-duplex Subscribe Stations

IEEE  Bandwidth request mechanisms unsolicited requests unicast polls broadcast/multicast polls, and piggybacking

Simulation Environment  The simulator is event-driven and was developed using C++

Performance Metrics  gross subframe utilization The ratio between the OFDM symbols utilized in a subframe for data transmission  Throughput the overall amount of net user data  transfer delay a packet arrives at the MAC connection buffer of the source node to the next protocol layer at the destination node  backlog gap difference between the BS’s estimate of the backlog of a connection  notification delay a new SDU is received by an SS and the time instant at which the BS receives a bandwidth request for this SDU

BS and SS Schedulers  Uplink Weighted Round Robin  Downlink Deficit Round Robin

Bandwidth Requests Management  When BE or nrtPS becomes busy contention-based bandwidth request  When SS has a busy connections piggybacking  rtPS static allocation of periodic unicast polls ex: video 33ms VoIP 20ms  nrtPS with unicast polls every 500ms

Simulation Name  N = S x C x W W : identical basic data sources C : connections per direction S : overall number of stations

Simulation Parameters  Repeat 20 times  Run was 1200s  Warmup period of 360s  95% confidence interval

Performance Evaluation  Throughput and Delay Analysis  Bandwidth Request Analysis  Evaluation of Multimedia Traffic

Average delay VS number of SSs Minimum traffic unit is 147Kb/s (6 Web) Offered load is N x 147Kb/s (Best Effort)

Throughput VS number of SSs DL : Management overhead UL : Contention Slot overhead

Offered Load Partitioning  The offered load N increase 10 to 90  6 WEB source (24.5 x 6 ~=147Kb/s)

Utilization VS offered load Contention Slot BW min = 7

Throughput VS offered load Physical preambles

Bandwidth Request Analysis  Nc : a broadcast poll  Np : piggybacked on PDUs

Number of bandwidth requests per uplink subframe VS offered load N c : contention req. N p : piggybacked req. N > 50, N c Almost negligible

Average delay VS BW min Capacity reserved for Contention bw-req

Throughput VS BW min

Evaluation of Multimedia Traffic  The minimum traffic unit is 71.5Kb/s  VoIP traffic has not reported in the paper

CDF of the delay in the conn, source and SS cases with 30/60/90 videoconference sources the SS case incurs more overheads due to the transmission of a higher number of physical preambles compared to the conn and source cases in the conn case, the BS might schedule an uplink grant to another connection j before the unicast poll to connection i is due

Notification delay VS offered load piggybacking/bandwidth stealing mechanisms for source and conn

95% of the delay VS offered load

Backlog error VS time with 160 videoconference sources

Conclusion  There is a trade-off between average delay and throughput  SSs are able to request uplink bandwidth to the BS efficiently using piggybacked bandwidth request  Finally, paper have shown that rtPS outperforms nrtPS in terms of delay