GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL The output above shows the result of regressing EARNINGS, hourly earnings in dollars, on S, years.

Slides:



Advertisements
Similar presentations
CHOW TEST AND DUMMY VARIABLE GROUP TEST
Advertisements

EC220 - Introduction to econometrics (chapter 5)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -
1 THE DISTURBANCE TERM IN LOGARITHMIC MODELS Thus far, nothing has been said about the disturbance term in nonlinear regression models.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
Lecture 9 Today: Ch. 3: Multiple Regression Analysis Example with two independent variables Frisch-Waugh-Lovell theorem.
EC220 - Introduction to econometrics (chapter 7)
1 BINARY CHOICE MODELS: PROBIT ANALYSIS In the case of probit analysis, the sigmoid function F(Z) giving the probability is the cumulative standardized.
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: exercise 3.5 Original citation: Dougherty, C. (2012) EC220 - Introduction.
1 ASSUMPTIONS FOR MODEL C: REGRESSIONS WITH TIME SERIES DATA Assumptions C.1, C.3, C.4, C.5, and C.8, and the consequences of their violations are the.
EC220 - Introduction to econometrics (chapter 2)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
EC220 - Introduction to econometrics (chapter 1)
1 INTERPRETATION OF A REGRESSION EQUATION The scatter diagram shows hourly earnings in 2002 plotted against years of schooling, defined as highest grade.
TESTING A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT This sequence describes the testing of a hypotheses relating to regression coefficients. It is.
1 A MONTE CARLO EXPERIMENT In the previous slideshow, we saw that the error term is responsible for the variations of b 2 around its fixed component 
SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N.
BINARY CHOICE MODELS: LOGIT ANALYSIS
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
TOBIT ANALYSIS Sometimes the dependent variable in a regression model is subject to a lower limit or an upper limit, or both. Suppose that in the absence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy variable classification with two categories Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: the effects of changing the reference category Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy classification with more than two categories Original citation:
DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES This sequence explains how to extend the dummy variable technique to handle a qualitative explanatory.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: Tobit models Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
1 INTERACTIVE EXPLANATORY VARIABLES The model shown above is linear in parameters and it may be fitted using straightforward OLS, provided that the regression.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
1 TWO SETS OF DUMMY VARIABLES The explanatory variables in a regression model may include multiple sets of dummy variables. This sequence provides an example.
Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat.
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
CONFLICTS BETWEEN UNBIASEDNESS AND MINIMUM VARIANCE
1 PROXY VARIABLES Suppose that a variable Y is hypothesized to depend on a set of explanatory variables X 2,..., X k as shown above, and suppose that for.
MULTIPLE RESTRICTIONS AND ZERO RESTRICTIONS
F TEST OF GOODNESS OF FIT FOR THE WHOLE EQUATION 1 This sequence describes two F tests of goodness of fit in a multiple regression model. The first relates.
MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE 1 This sequence provides a geometrical interpretation of a multiple regression model with two.
Simple regression model: Y =  1 +  2 X + u 1 We have seen that the regression coefficients b 1 and b 2 are random variables. They provide point estimates.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
. reg LGEARN S WEIGHT85 Source | SS df MS Number of obs = F( 2, 537) = Model |
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
POSSIBLE DIRECT MEASURES FOR ALLEVIATING MULTICOLLINEARITY 1 What can you do about multicollinearity if you encounter it? We will discuss some possible.
(1)Combine the correlated variables. 1 In this sequence, we look at four possible indirect methods for alleviating a problem of multicollinearity. POSSIBLE.
1 Y SIMPLE REGRESSION MODEL Suppose that a variable Y is a linear function of another variable X, with unknown parameters  1 and  2 that we wish to estimate.
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
COST 11 DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 This sequence explains how you can include qualitative explanatory variables in your regression.
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
1 NONLINEAR REGRESSION Suppose you believe that a variable Y depends on a variable X according to the relationship shown and you wish to obtain estimates.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively,
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
WHITE TEST FOR HETEROSCEDASTICITY 1 The White test for heteroscedasticity looks for evidence of an association between the variance of the disturbance.
1 COMPARING LINEAR AND LOGARITHMIC SPECIFICATIONS When alternative specifications of a regression model have the same dependent variable, R 2 can be used.
VARIABLE MISSPECIFICATION II: INCLUSION OF AN IRRELEVANT VARIABLE In this sequence we will investigate the consequences of including an irrelevant variable.
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
VARIABLE MISSPECIFICATION I: OMISSION OF A RELEVANT VARIABLE In this sequence and the next we will investigate the consequences of misspecifying the regression.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL The output above shows the result of regressing EARNINGS, hourly earnings in dollars, on S, years of schooling, and EXP, years of work experience. 1. reg EARNINGS S EXP Source | SS df MS Number of obs = F( 2, 537) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | EXP | _cons |

2 Suppose that you were particularly interested in the relationship between EARNINGS and S and wished to represent it graphically, using the sample data. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL

3 A simple plot would be misleading. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL

4 Schooling is negatively correlated with work experience. The plot fails to take account of this, and as a consequence the regression line underestimates the impact of schooling on earnings. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL. cor S EXP (obs=540) | S ASVABC S| EXP|

5 We will investigate the distortion mathematically when we come to omitted variable bias. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL. cor S EXP (obs=540) | S ASVABC S| EXP|

6 To eliminate the distortion, you purge both EARNINGS and S of their components related to EXP and then draw a scatter diagram using the purged variables. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL. cor S EXP (obs=540) | S ASVABC S| EXP|

. reg EARNINGS EXP Source | SS df MS Number of obs = F( 1, 538) = 2.98 Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] EXP | _cons | predict EEARN, resid 7 We start by regressing EARNINGS on EXP, as shown above. The residuals are the part of EARNINGS which is not related to EXP. The ‘predict’ command is the Stata command for saving the residuals from the most recent regression. We name them EEARN. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL

. reg S EXP Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = S | Coef. Std. Err. t P>|t| [95% Conf. Interval] EXP | _cons | predict ES, resid 8 We do the same with S. We regress it on EXP and save the residuals as ES. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL

9 Now we plot EEARN on ES and the scatter is a faithful representation of the relationship, both in terms of the slope of the trend line (the red line) and in terms of the variation about that line. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL

10 As you would expect, the trend line is steeper that in scatter diagram which did not control for EXP (reproduced here as the black dashed line). GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL

11 Here is the regression of EEARN on ES. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL. reg EEARN ES Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval] ES | _cons | 8.10e

12 A mathematical proof that the technique works requires matrix algebra. We will content ourselves by verifying that the estimate of the slope coefficient is the same as in the multiple regression. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL. reg EEARN ES Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval] ES | _cons | 8.10e reg EARNINGS S EXP EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | EXP | _cons | From multiple regression:. reg EEARN ES Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval] ES | _cons | 8.10e

13 Finally, a small and not very important technical point. You may have noticed that the standard error and t statistic do not quite match. The reason for this is that the number of degrees of freedom is overstated by 1 in the residuals regression. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL. reg EEARN ES Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval] ES | _cons | 8.10e reg EARNINGS S EXP EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | EXP | _cons | From multiple regression:. reg EEARN ES Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval] ES | _cons | 8.10e

14 That regression has not made allowance for the fact that we have already used up 1 degree of freedom in removing EXP from the model. GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL. reg EEARN ES Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval] ES | _cons | 8.10e reg EARNINGS S EXP EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | EXP | _cons | From multiple regression:. reg EEARN ES Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EEARN | Coef. Std. Err. t P>|t| [95% Conf. Interval] ES | _cons | 8.10e

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 3.2 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course EC2020 Elements of Econometrics