Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes EIN 3390 Manufacturing Processes Spring, 2012.

Slides:



Advertisements
Similar presentations
Chapter 24 ECONOMIC AND PRODUCT DESIGN CONSIDERATIONS IN MACHINING
Advertisements

GRINDING AND OTHER ABRASIVE PROCESSES Chapter 25
Machine Tools And Devices For Special Technologies Electrochemical machining Slovak University of Technology Faculty of Material Science and Technology.
1 Electrochemical Machining (ECM). 2 Electrochemical Machining Nontraditional machining process of removing metal from extremely hard materials using.
Chapter 28: Nontraditional Manufacturing Processes
Asst. Prof. Dr.Saad Kariem Shather
ME 330 Manufacturing Processes CUTTING PROCESSES
NONTRADITIONAL MACHINING Chapter 26
HABEEB HATTAB HABEEB Office: BN-Block, Level-3, Room Ext. No.: 7292 H/P No.:
NONTRADITIONAL MACHINING AND THERMAL CUTTING PROCESSES
Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes EIN 3390 Manufacturing Processes Fall,
PROPERTIES AND SELECTION OF MATERIALS
Nontraditional Machining
Introduction to Manufacturing Technology –Lecture 6 Instructors: (1)Shantanu Bhattacharya, ME, IITK, (2)Prof.
MT-284 MANUFACTURING PROCESSES
Non-traditional Machining Processes
Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes (Review) EIN 3390 Manufacturing Processes Spring,
MEMs Fabrication Alek Mintz 22 April 2015 Abstract
Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes EIN 3390 Manufacturing Processes Summer A, 2012.
Machining is processes in which we get a desired final shape and size from of raw material. 1.Conventional / Traditional Machining 2.Non Conventional.
Nontraditional Machining คลิก รูปลำโพงจะมีเสียงบรรยาย Dr.Apiwat Muttamara.
Advanced Machining Processes
These methods utilize electric, chemical, sound, or ray energy. They supplement cutting but sometimes can replace it. Electrical discharge machine Electrical.
The Development of a New Course in Nontraditional Machining Kuen-Ming Shu* and Shan-ying Pan ** *National Formosa University, Huwei, Yunlin, Taiwan, R.O.C.
Laser Beam Machining Done By: Murad.
Lecture # 8 NONTRADITIONAL MACHINING AND THERMAL CUTTING PROCESSES
LASER BEAM MACHINING BY S.PREMKUMAR.
Quiz 7 Write down the 5 important steps involved in Powder Metallurgy.
Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes (Review) EIN 3390 Manufacturing Processes Fall, 2010.
Manufacturing processes
ME 330 Manufacturing Processes CUTTING PROCESSES.
TA202A Lecture-10 Instructor: Shantanu Bhattacharya.
Electrochemical Machining (ECM)
Mold Texturing Trevor Thorwart Andrew Meier Josh Hoover.
Electrical Methods of Material Removal Chapter 5.
老師:戴 子 堯 學生:陳 立 偉 日期: Outline INTRODUCTION THE DRY EDM PROCESS EXPERIMENTAL SETUP CONCLUSIONS 2.
Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes EIN 3390 Manufacturing Processes Spring, 2011.
Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes (Review) EIN 3390 Manufacturing Processes Summer A,
1 Teaching Innovation - Entrepreneurial - Global The Centre for Technology enabled Teaching & Learning, N Y S S, India DTEL DTEL (Department for Technology.
IMS ENGINEERING COLLEGE ,GHAZIABAD (U
PRESENTATION on EDM, ECM& LBM Presented by-: kumar saurabh Roll no-: Branch-: ME 1 Submitted to-: Mr Deepak Sharma.
Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes (Review) EIN 3390 Manufacturing Processes Spring, 2011.
Prepared by: DD urgesh Kumar.  Electrochemical machining is a metal machining technology based on electrolysis where the product is processed without.
Electric Discharge Machining (EDM)
Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes EIN 3390 Manufacturing Processes Summer A, 2011.
1 Electrochemical Machining (ECM). 2 Electrochemical Machining Uses an electrolyte and electrical current to ionize and remove metal atoms Can machine.
ELECTRICAL ENERGY BASED PROCESSES
ELECTRICAL ENERGY BASED PROCESSES
Chemical Machining Fig : (a) Schematic illustration of the chemical machining process. Note that no forces or machine tools are involved in this process.
ELECTRIC DISCHARGE MACHINING (EDM)
NON TRADITIONAL (OR) UNCONVENTIONAL MACHINING PROCESS
Non-traditional Machining Processes
ELECTRO-DISCHARGE MACHINING
Nontraditional Processes Defined
Subject Name: Manufacturing Process
Chemical and Electro-Chemical Energy Based Processes
Unconventional Machining Processes
Chemical and Electro-Chemical Energy Based Processes
Advanced Machining Processes
Electrical Discharge Machine - EDM
Chemical and Electro-Chemical Energy Based Processes
ELECTRICAL ENERGY BASED PROCESSES
ELECTRICAL ENERGY BASED PROCESSES
Unconventional Machining Processes
Manufacturing Processes
ELECTRIC DISCHARGE MACHINING
Associate Prof. Mohamed Ahmed Awad
Unconventional Machining
Prepared by: Shayfull Zamree Abd Rahim
Manufacturing Processes
Presentation transcript:

Chapter 19 Electronic Electrochemical Chemical and Thermal Machining Processes EIN 3390 Manufacturing Processes Spring, 2012

19.1 Introduction Non-traditional machining (NTM) processes have several advantages ◦Complex geometries are possible ◦Extreme surface finish ◦Tight tolerances ◦Delicate components ◦Little or no burring or residual stresses ◦Brittle materials with high hardness can be machined ◦Microelectronic or integrated circuits (IC) are possible to mass produce

NTM Processes Four basic groups of material removal using NTM processes ◦Chemical:  Chemical reaction between a liquid reagent and workpiece results in etching ◦Electrochemical  An electrolytic reaction at workpiece surface for removal of material ◦Thermal  High temperature in very localized regions evaporate materials, for example, EDM ◦Mechanical  High-velocity abrasives or liquids remove materials

Limitations of Conventional Machining Processes Machining processes that involve chip formation have a number of limitations ◦Large amounts of energy ◦Unwanted distortion ◦Residual stresses ◦Burrs ◦Delicate or complex geometries may be difficult or impossible

Conventional End Milling vs. NTM Typical machining parameters ◦Feed rate (5 – 200 in./min.) ◦Surface finish (60 – 150 in) AA – Arithmetic Average ◦Dimensional accuracy (0.001 – in.) ◦Workpiece/feature size (25 x 24 in.); 1 in. deep NTM processes typically have lower feed rates and require more power consumption The feed rate in NTM is independent of the material being processed

Table 19-1 Summary of NTM Processes

19.2 Chemical Machining Processes Typically involves metals, but ceramics and glasses may be etched Material is removed from a workpiece by selectively exposing it to a chemical reagent or etchant ◦Gel milling- gel is applied to the workpiece in gel form. ◦Maskant- selected areas are covered and the remaining surfaces are exposed to the etchant. This is the most common method of CHM.

Masking Several different methods ◦Cut-and-peel ◦Scribe-and-peel ◦Screen printing Etch rates are slow in comparison to other NTM processes Figure 19-1 Steps required to produce a stepped contour by chemical machining.

Defects in Etching If baths are not agitated properly, defects result Figure 19-2 Typical chemical milling defects: (a) overhang: deep cuts with improper agitation; (b) islands: isolated high spots from dirt, residual maskant, or work material inhomogeneity; (c) dishing: thinning in center due to improper agitation or stacking of parts in tank.

Advantages and Disadvantages of Chemical Machining Advantages ◦Process is relatively simple ◦Does not require highly skilled labor ◦Induces no stress or cold working in the metal ◦Can be applied to almost any metal ◦Large areas ◦Virtually unlimited shape ◦Thin sections Disadvantages ◦Requires the handling of dangerous chemicals ◦Disposal of potentially harmful byproducts ◦Metal removal rate is slow

19.3 Electrochemical Machining Process Electrochemical machining (ECM) removes material by anodic dissolution with a rapidly flowing electrolyte The tool is the cathode and the workpiece is the anode Figure Schematic diagram of electrochemical machining process (ECM).

19.3 Electrochemical Machining Process Electrochemical machining (ECM) removes material by anodic dissolution with a rapidly flowing electrolyte The tool is the cathode and the workpiece is the electrolyte Figure Schematic diagram of electrochemical machining process (ECM).

Table 19-3 Material Removal Rates for ECM Alloys Assuming 100% Current Efficiency

Electrochemical Machining Proces Design factors in electrochemical machining ◦Current densities tend to concentrate at sharp edges or features ◦Control of electrolyte flow can be difficult ◦Parts may have lower fatigue resistance

Table 19-4 Metal Removal Rates for ECG for Various Metals (Electrochemical Grinding – ECG)

Advantages and Disadvantages of Electrochemical Machining Advantages ◦ECM is well suited for the machining of complex two- dimensional shapes ◦Delicate parts may be made ◦Difficult-to machine geometries ◦Poorly machinable materials may be processed ◦Little or no tool wear Disadvantages ◦Initial tooling can be timely and costly ◦Environmentally harmful by-products

19.4 Electrical Discharge Machining Electrical discharge machining (EDM) removes metal by discharging electric current from a pulsating DC power supply across a thin interelectrode gap The gap is filled by a dielectric fluid, which becomes locally ionized Two different types of EDM exist based on the shape of the tool electrode ◦Ram EDM/ sinker EDM ◦Wire EDM

Figure EDM or spark erosion machining of metal, using high-frequency spark discharges in a dielectric, between the shaped tool (cathode) and the work (anode). The table can make X-Y movements.

EDM Processes Slow compared to conventional machining Produce a matte surface Complex geometries are possible Often used in tool and die making Figure Schematic diagram of equipment for wire EDM using a moving wire electrode.

EDM Processes Figure (above) SEM micrograph of EDM surface (right) on top of a ground surface in steel. The spherical nature of debris on the surface is in evidence around the craters (300 x). Figure (left) Examples of wire EDM workpieces made on NC machine (Hatachi).

Effect of Current on-time and Discharge Current on Crater Size MRR = (C I)/(T m 1.23 ), Where MRR – material removal rate in in. 3 /min.; C – constant of proportionality equal to 5.08 in US customary units; I – discharge current in amps; T m – melting temperature of workpiece material, 0 F. Example: A certain alloy whose melting point = 2,000 0 F is to be machined in EDM. If a discharge current = 25A, what is the expected metal removal rate? MRR = (C I)/(T m 1.23 ) = (5.08 x 25)/(2, ) = in. 3 /min.

Figure The principles of metal removal for EDM.

Effect of Current on-time and Discharge Current on Crater Size From Fig 19 – 25: we have the conclusions: ◦Generally higher duty cycles with higher currents and lower frequencies are used to maximize MRR. ◦Higher frequencies and lower discharge currents are used to improve surface finish while reducing MRR. ◦Higher frequencies generally cause increased tool wear.

Considerations for EDM Graphite is the most widely used tool electrode The choice of electrode material depends on its machinability and coast as well as the desired MRR, surface finish, and tool wear Four main functions of dielectric fluid: 1) Electrical insulation 2) Spark conductor 3) Flushing medium 4) Coolant

Table 19-5 Melting Temperatures for Selected EDM Workpiece Materials

Advantages and Disadvantages of EDM Advantages Applicable to all materials that are fairly good electrical conductors Hardness, toughness, or brittleness of the material imposes no limitations Fragile and delicate parts Disadvantages Produces a hard recast surface Surface may contain fine cracks caused by thermal stress Fumes can be toxic

Electron and Ion Machining Electron beam machining (EBM) is a thermal process that uses a beam of high- energy electrons focused on the workpiece to melt and vaporize a metal Ion beam machining (IBM) is a nano-scale machining technology used in the microelectronics industry to cleave defective wafers for characterization and failure analysis Figure Electron-beam machining uses a high- energy electron beam (10 9 W/in. 2 )

Laser-Beam Machining Laser-beam machining (LBM) uses an intensely focused coherent stream of light to vaporize or chemically ablate materials Figure Schematic diagram of a laser-beam machine, a thermal NTM process that can micromachine any material.

Plasma Arc Cutting (PAC) Uses a superheated stream of electrically ionized gas to melt and remove material The process can be used on almost any conductive material PAC can be used on exotic materials at high rates Figure Plasma arc machining or cutting.

HW for Chapter 19 Review Questions: 17, 19, 20 (page 521)